通过多模态深度神经网络识别噪声时间序列中的混沌动力学

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-08-29 DOI:10.1088/2632-2153/ad7190
Alessandro Giuseppi, Danilo Menegatti, Antonio Pietrabissa
{"title":"通过多模态深度神经网络识别噪声时间序列中的混沌动力学","authors":"Alessandro Giuseppi, Danilo Menegatti, Antonio Pietrabissa","doi":"10.1088/2632-2153/ad7190","DOIUrl":null,"url":null,"abstract":"Chaos detection is the problem of identifying whether a series of measurements is being sampled from an underlying set of chaotic dynamics. The unavoidable presence of measurement noise significantly affects the performance of chaos detectors, as discerning chaotic dynamics from stochastic signals becomes more challenging. This paper presents a computationally efficient multimodal deep neural network tailored for chaos detection by combining information coming from the analysis of time series, recurrence plots and spectrograms. The proposed approach is the first one suitable for multi-class classification of chaotic systems while being robust with respect to measurement noise, and is validated on a dataset of 15 different chaotic and non-chaotic dynamics subject to white, pink or brown colored noise.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying chaotic dynamics in noisy time series through multimodal deep neural networks\",\"authors\":\"Alessandro Giuseppi, Danilo Menegatti, Antonio Pietrabissa\",\"doi\":\"10.1088/2632-2153/ad7190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chaos detection is the problem of identifying whether a series of measurements is being sampled from an underlying set of chaotic dynamics. The unavoidable presence of measurement noise significantly affects the performance of chaos detectors, as discerning chaotic dynamics from stochastic signals becomes more challenging. This paper presents a computationally efficient multimodal deep neural network tailored for chaos detection by combining information coming from the analysis of time series, recurrence plots and spectrograms. The proposed approach is the first one suitable for multi-class classification of chaotic systems while being robust with respect to measurement noise, and is validated on a dataset of 15 different chaotic and non-chaotic dynamics subject to white, pink or brown colored noise.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad7190\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad7190","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

混沌检测是一个识别一系列测量值是否从一组潜在的混沌动力学中采样的问题。测量噪声的不可避免的存在极大地影响了混沌检测器的性能,因为从随机信号中辨别混沌动力学变得更具挑战性。本文介绍了一种计算效率高的多模态深度神经网络,该网络结合了时间序列分析、递推图和频谱图的信息,专为混沌检测量身定制。所提出的方法是第一种适用于混沌系统多类分类的方法,同时对测量噪声具有鲁棒性,并在受白色、粉色或棕色噪声影响的 15 种不同混沌和非混沌动力学数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying chaotic dynamics in noisy time series through multimodal deep neural networks
Chaos detection is the problem of identifying whether a series of measurements is being sampled from an underlying set of chaotic dynamics. The unavoidable presence of measurement noise significantly affects the performance of chaos detectors, as discerning chaotic dynamics from stochastic signals becomes more challenging. This paper presents a computationally efficient multimodal deep neural network tailored for chaos detection by combining information coming from the analysis of time series, recurrence plots and spectrograms. The proposed approach is the first one suitable for multi-class classification of chaotic systems while being robust with respect to measurement noise, and is validated on a dataset of 15 different chaotic and non-chaotic dynamics subject to white, pink or brown colored noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1