Alexandre de Camargo, Ricky T Q Chen, Rodrigo A Vargas-Hernández
{"title":"利用归一化流实现无轨道密度泛函理论","authors":"Alexandre de Camargo, Ricky T Q Chen, Rodrigo A Vargas-Hernández","doi":"10.1088/2632-2153/ad7226","DOIUrl":null,"url":null,"abstract":"Orbital-free density functional theory (OF-DFT) for real-space systems has historically depended on Lagrange optimization techniques, primarily due to the inability of previously proposed electron density approaches to ensure the normalization constraint. This study illustrates how leveraging contemporary generative models, notably normalizing flows (NFs), can surmount this challenge. We develop a Lagrangian-free optimization framework by employing these machine learning models for the electron density. This diverse approach also integrates cutting-edge variational inference techniques and equivariant deep learning models, offering an innovative reformulation to the OF-DFT problem. We demonstrate the versatility of our framework by simulating a one-dimensional diatomic system, LiH, and comprehensive simulations of hydrogen, lithium hydride, water, and four hydrocarbon molecules. The inherent flexibility of NFs facilitates initialization with promolecular densities, markedly enhancing the efficiency of the optimization process.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"27 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging normalizing flows for orbital-free density functional theory\",\"authors\":\"Alexandre de Camargo, Ricky T Q Chen, Rodrigo A Vargas-Hernández\",\"doi\":\"10.1088/2632-2153/ad7226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orbital-free density functional theory (OF-DFT) for real-space systems has historically depended on Lagrange optimization techniques, primarily due to the inability of previously proposed electron density approaches to ensure the normalization constraint. This study illustrates how leveraging contemporary generative models, notably normalizing flows (NFs), can surmount this challenge. We develop a Lagrangian-free optimization framework by employing these machine learning models for the electron density. This diverse approach also integrates cutting-edge variational inference techniques and equivariant deep learning models, offering an innovative reformulation to the OF-DFT problem. We demonstrate the versatility of our framework by simulating a one-dimensional diatomic system, LiH, and comprehensive simulations of hydrogen, lithium hydride, water, and four hydrocarbon molecules. The inherent flexibility of NFs facilitates initialization with promolecular densities, markedly enhancing the efficiency of the optimization process.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad7226\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad7226","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Leveraging normalizing flows for orbital-free density functional theory
Orbital-free density functional theory (OF-DFT) for real-space systems has historically depended on Lagrange optimization techniques, primarily due to the inability of previously proposed electron density approaches to ensure the normalization constraint. This study illustrates how leveraging contemporary generative models, notably normalizing flows (NFs), can surmount this challenge. We develop a Lagrangian-free optimization framework by employing these machine learning models for the electron density. This diverse approach also integrates cutting-edge variational inference techniques and equivariant deep learning models, offering an innovative reformulation to the OF-DFT problem. We demonstrate the versatility of our framework by simulating a one-dimensional diatomic system, LiH, and comprehensive simulations of hydrogen, lithium hydride, water, and four hydrocarbon molecules. The inherent flexibility of NFs facilitates initialization with promolecular densities, markedly enhancing the efficiency of the optimization process.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.