Jorge Parra-Nieto, Iñigo Aguirre de Carcer, María Amor García del Cid, Sandra Jimenez-Falcao, Javier Gónzalez-Larre, Alejandro Baeza
{"title":"作为抗肿瘤免疫疗法活性增强剂的刺激响应型纳米载体","authors":"Jorge Parra-Nieto, Iñigo Aguirre de Carcer, María Amor García del Cid, Sandra Jimenez-Falcao, Javier Gónzalez-Larre, Alejandro Baeza","doi":"10.1002/admi.202400343","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the understanding of the role of the immune system in tumor progression and metastasis is paving the way for the development of antitumoral strategies based on the delivery of immunotherapeutic agents. The engineering of stimuli-responsive nanocarriers able to release their payload in a controlled manner being able to boost potent and sustained immune responses against tumors has provided a powerful tool to eradicate tumors with extreme precision. Paramount advantages to trigger the immune system against tumors are the high selectivity and memory effect of immune response, which allows not only to eradicate primary and metastatic malignancies but also to avoid their relapse. In this review, the recent advances carried out in the development of smart nanocarriers for immunotherapy are presented.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 30","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400343","citationCount":"0","resultStr":"{\"title\":\"Stimuli-Responsive Nanocarriers as Active Enhancers of Antitumoral Immunotherapy\",\"authors\":\"Jorge Parra-Nieto, Iñigo Aguirre de Carcer, María Amor García del Cid, Sandra Jimenez-Falcao, Javier Gónzalez-Larre, Alejandro Baeza\",\"doi\":\"10.1002/admi.202400343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the understanding of the role of the immune system in tumor progression and metastasis is paving the way for the development of antitumoral strategies based on the delivery of immunotherapeutic agents. The engineering of stimuli-responsive nanocarriers able to release their payload in a controlled manner being able to boost potent and sustained immune responses against tumors has provided a powerful tool to eradicate tumors with extreme precision. Paramount advantages to trigger the immune system against tumors are the high selectivity and memory effect of immune response, which allows not only to eradicate primary and metastatic malignancies but also to avoid their relapse. In this review, the recent advances carried out in the development of smart nanocarriers for immunotherapy are presented.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400343\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400343\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400343","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stimuli-Responsive Nanocarriers as Active Enhancers of Antitumoral Immunotherapy
In recent years, the understanding of the role of the immune system in tumor progression and metastasis is paving the way for the development of antitumoral strategies based on the delivery of immunotherapeutic agents. The engineering of stimuli-responsive nanocarriers able to release their payload in a controlled manner being able to boost potent and sustained immune responses against tumors has provided a powerful tool to eradicate tumors with extreme precision. Paramount advantages to trigger the immune system against tumors are the high selectivity and memory effect of immune response, which allows not only to eradicate primary and metastatic malignancies but also to avoid their relapse. In this review, the recent advances carried out in the development of smart nanocarriers for immunotherapy are presented.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.