Shohil Kishore, David Sundaram, Michael David Myers
{"title":"用于计算密集型社交媒体研究的时态动力学框架和方法论","authors":"Shohil Kishore, David Sundaram, Michael David Myers","doi":"10.1177/02683962241283051","DOIUrl":null,"url":null,"abstract":"The growing availability of expansive social media trace data (SMTD) offers researchers promising opportunities to create rich depictions of societal and social phenomena. Despite this potential, research analysing such datasets often struggles to construct novel theoretical insight. This paper argues that holistically incorporating temporality enhances data collection and data analysis, thereby facilitating process theory construction from SMTD. Recommendations to integrate temporality are outlined in the proposed Temporal Dynamics Framework and Methodology (TDFM). We apply the TDFM to investigate the temporal dynamics of mental health discourse on Twitter (now X) across different phases of the COVID-19 pandemic, theoretically framed in the context of innate psychological needs satisfaction. The findings reveal dynamic shifts in social media use, indicating that different phases of the pandemic triggered dynamic shifts in the needs motivating, and being motivated by, social media use. This illustrative case reflectively evaluates the usefulness of the TDFM in contextualising SMTD collection, analytical strategies, and process theory construction by incorporating a dynamic perspective on time.","PeriodicalId":50178,"journal":{"name":"Journal of Information Technology","volume":"15 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Temporal Dynamics Framework and Methodology for Computationally Intensive Social Media Research\",\"authors\":\"Shohil Kishore, David Sundaram, Michael David Myers\",\"doi\":\"10.1177/02683962241283051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing availability of expansive social media trace data (SMTD) offers researchers promising opportunities to create rich depictions of societal and social phenomena. Despite this potential, research analysing such datasets often struggles to construct novel theoretical insight. This paper argues that holistically incorporating temporality enhances data collection and data analysis, thereby facilitating process theory construction from SMTD. Recommendations to integrate temporality are outlined in the proposed Temporal Dynamics Framework and Methodology (TDFM). We apply the TDFM to investigate the temporal dynamics of mental health discourse on Twitter (now X) across different phases of the COVID-19 pandemic, theoretically framed in the context of innate psychological needs satisfaction. The findings reveal dynamic shifts in social media use, indicating that different phases of the pandemic triggered dynamic shifts in the needs motivating, and being motivated by, social media use. This illustrative case reflectively evaluates the usefulness of the TDFM in contextualising SMTD collection, analytical strategies, and process theory construction by incorporating a dynamic perspective on time.\",\"PeriodicalId\":50178,\"journal\":{\"name\":\"Journal of Information Technology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Technology\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/02683962241283051\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/02683962241283051","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Temporal Dynamics Framework and Methodology for Computationally Intensive Social Media Research
The growing availability of expansive social media trace data (SMTD) offers researchers promising opportunities to create rich depictions of societal and social phenomena. Despite this potential, research analysing such datasets often struggles to construct novel theoretical insight. This paper argues that holistically incorporating temporality enhances data collection and data analysis, thereby facilitating process theory construction from SMTD. Recommendations to integrate temporality are outlined in the proposed Temporal Dynamics Framework and Methodology (TDFM). We apply the TDFM to investigate the temporal dynamics of mental health discourse on Twitter (now X) across different phases of the COVID-19 pandemic, theoretically framed in the context of innate psychological needs satisfaction. The findings reveal dynamic shifts in social media use, indicating that different phases of the pandemic triggered dynamic shifts in the needs motivating, and being motivated by, social media use. This illustrative case reflectively evaluates the usefulness of the TDFM in contextualising SMTD collection, analytical strategies, and process theory construction by incorporating a dynamic perspective on time.
期刊介绍:
The aim of the Journal of Information Technology (JIT) is to provide academically robust papers, research, critical reviews and opinions on the organisational, social and management issues associated with significant information-based technologies. It is designed to be read by academics, scholars, advanced students, reflective practitioners, and those seeking an update on current experience and future prospects in relation to contemporary information and communications technology themes.
JIT focuses on new research addressing technology and the management of IT, including strategy, change, infrastructure, human resources, sourcing, system development and implementation, communications, technology developments, technology futures, national policies and standards. It also publishes articles that advance our understanding and application of research approaches and methods.