脂肪组织血管中的细胞因子和趋化因子受体图谱揭示了内皮细胞对艾滋病毒的反应

IF 4.5 2区 生物学 Q2 CELL BIOLOGY Journal of Cellular Physiology Pub Date : 2024-09-12 DOI:10.1002/jcp.31415
Laventa M. Obare, Stephen Priest, Anas Ismail, Mona Mashayekhi, Xiuqi Zhang, Lindsey K. Stolze, Quanhu Sheng, Kisyua Nthenge, Zer Vue, Kit Neikirk, Heather K. Beasley, Curtis Gabriel, Tecla Temu, Sara Gianella, Simon A. Mallal, John R. Koethe, Antentor Hinton, Samuel S. Bailin, Celestine N. Wanjalla
{"title":"脂肪组织血管中的细胞因子和趋化因子受体图谱揭示了内皮细胞对艾滋病毒的反应","authors":"Laventa M. Obare, Stephen Priest, Anas Ismail, Mona Mashayekhi, Xiuqi Zhang, Lindsey K. Stolze, Quanhu Sheng, Kisyua Nthenge, Zer Vue, Kit Neikirk, Heather K. Beasley, Curtis Gabriel, Tecla Temu, Sara Gianella, Simon A. Mallal, John R. Koethe, Antentor Hinton, Samuel S. Bailin, Celestine N. Wanjalla","doi":"10.1002/jcp.31415","DOIUrl":null,"url":null,"abstract":"Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single‐cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma‐conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF‐α via NFK‐β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV\",\"authors\":\"Laventa M. Obare, Stephen Priest, Anas Ismail, Mona Mashayekhi, Xiuqi Zhang, Lindsey K. Stolze, Quanhu Sheng, Kisyua Nthenge, Zer Vue, Kit Neikirk, Heather K. Beasley, Curtis Gabriel, Tecla Temu, Sara Gianella, Simon A. Mallal, John R. Koethe, Antentor Hinton, Samuel S. Bailin, Celestine N. Wanjalla\",\"doi\":\"10.1002/jcp.31415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single‐cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma‐conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF‐α via NFK‐β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcp.31415\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31415","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

慢性全身性炎症会大大增加艾滋病病毒感染者(PLWH)发生心肌梗死的风险。内皮细胞功能障碍会破坏血管稳态调节,增加血管收缩、炎症和血栓形成的风险,从而导致心血管疾病。我们的目的是描述白血病患者内皮细胞趋化因子、细胞因子和趋化因子受体的特征,假设在我们的队列中,葡萄糖不耐受导致了它们的不同表达,并与内皮功能障碍有牵连。通过单细胞转录组分析,我们对 59 名患有和未患有葡萄糖不耐受症的 PLWH 皮下脂肪组织中的动脉 EC、毛细血管 EC、静脉 EC 和血管平滑肌细胞(VSMC)的趋化因子和细胞因子受体表达进行了表型分析。我们的研究结果表明,动脉和毛细血管选委表达的干扰素和肿瘤坏死因子(TNF)受体明显高于静脉选委和血管平滑肌细胞。与动脉和毛细血管 ECs 相比,静脉 ECs 表现出更多的白细胞介素(IL)1R1 和 ACKR1 受体,VSMCs 表现出明显的 IL6R 表达。如果按组别分层,患有糖耐量异常的 PLWH 患者的动脉心肌表达的 IL1R1、IL6R、CXCL12、CCL14 和 ICAM2 转录物明显高于未患糖尿病的 PLWH 患者的动脉心肌表达的 IL1R1、IL6R、CXCL12、CCL14 和 ICAM2 转录物。在所研究的不同血管细胞类型中,动脉心肌细胞占脂肪组织中所有心肌细胞的比例与血浆空腹血糖呈正相关。相反,静脉 EC 和 VSMC 与血浆 IL6 呈正相关。为了直接评估 PLWH 血浆对内皮功能的影响,我们在 PLWH 血浆调节培养基中培养了人动脉 EC(HAEC),并进行了大量 RNA 测序。来自 PLWH 的血浆刺激了 ECs,上调了富含氧化磷酸化和 TNF-α 通过 NFK-β 通路的基因。总之,白血病患者的心血管细胞表现出不同的细胞因子和趋化因子受体表达,动脉心血管细胞受葡萄糖不耐受的影响最大。进一步的研究必须阐明细胞因子和趋化因子在心血管细胞功能障碍中的作用,并确定疾病进展和治疗反应的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV
Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single‐cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma‐conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF‐α via NFK‐β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
期刊最新文献
NAT10 functions as a pivotal regulator in gastric cancer metastasis and tumor immunity. Epigenetic regulation of myogenesis by vitamin C. Fish collagen sponge with human umbilical cord mesenchymal stem cells for diabetic wound repair in rats. RHO subfamily of small GTPases in the development and function of hematopoietic cells. HO-1: An emerging target in fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1