{"title":"用于食品和营养品输送的脂质体货运及其先进的微结构表征技术","authors":"Punita Aggarwal, Sunil Kumar Sah, Velayutham Ravichandiran, Subhadeep Roy, Santanu Kaity","doi":"10.1021/acsfoodscitech.4c00493","DOIUrl":null,"url":null,"abstract":"Liposome-based delivery technology has gained potential interest in the food sector because it is nontoxic, biocompatible, completely biodegradable, and nonimmunogenic. Numerous products have been researched to develop a safe, effective, and stable delivery system using liposomal technology. In this overview, we focus on different kinds of liposomal technology, how they are made, and how they are used to improve the safety and shelf life of foods and supplements. We also highlight several cutting-edge microstructure characterization methods that can be used to study liposomal micro- or nanodelivery systems in the food and nutraceutical industries. The regulatory approval process varies from country to country and market to market; therefore, finding the most appropriate, reliable, fast, and accurate characterization method is essential. Liposomes have low production cost, lack toxicity, and have innate versatility, representing promising new avenues for delivering food and nutraceuticals. Innovative methods are needed to characterize and standardize such food delivery systems because of the possibility of novel risks. Familiarity with the most recent developments in the characterization of liposomes could prove helpful. Moreover, these methods are not only limited to the characterization of liposomes but can also be used to describe other micro- or nanobased food and nutraceutical delivery systems.","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liposomal Freight and Their Advanced Microstructure Characterization Techniques for Food and Nutraceutical Delivery\",\"authors\":\"Punita Aggarwal, Sunil Kumar Sah, Velayutham Ravichandiran, Subhadeep Roy, Santanu Kaity\",\"doi\":\"10.1021/acsfoodscitech.4c00493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liposome-based delivery technology has gained potential interest in the food sector because it is nontoxic, biocompatible, completely biodegradable, and nonimmunogenic. Numerous products have been researched to develop a safe, effective, and stable delivery system using liposomal technology. In this overview, we focus on different kinds of liposomal technology, how they are made, and how they are used to improve the safety and shelf life of foods and supplements. We also highlight several cutting-edge microstructure characterization methods that can be used to study liposomal micro- or nanodelivery systems in the food and nutraceutical industries. The regulatory approval process varies from country to country and market to market; therefore, finding the most appropriate, reliable, fast, and accurate characterization method is essential. Liposomes have low production cost, lack toxicity, and have innate versatility, representing promising new avenues for delivering food and nutraceuticals. Innovative methods are needed to characterize and standardize such food delivery systems because of the possibility of novel risks. Familiarity with the most recent developments in the characterization of liposomes could prove helpful. Moreover, these methods are not only limited to the characterization of liposomes but can also be used to describe other micro- or nanobased food and nutraceutical delivery systems.\",\"PeriodicalId\":72048,\"journal\":{\"name\":\"ACS food science & technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS food science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsfoodscitech.4c00493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsfoodscitech.4c00493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Liposomal Freight and Their Advanced Microstructure Characterization Techniques for Food and Nutraceutical Delivery
Liposome-based delivery technology has gained potential interest in the food sector because it is nontoxic, biocompatible, completely biodegradable, and nonimmunogenic. Numerous products have been researched to develop a safe, effective, and stable delivery system using liposomal technology. In this overview, we focus on different kinds of liposomal technology, how they are made, and how they are used to improve the safety and shelf life of foods and supplements. We also highlight several cutting-edge microstructure characterization methods that can be used to study liposomal micro- or nanodelivery systems in the food and nutraceutical industries. The regulatory approval process varies from country to country and market to market; therefore, finding the most appropriate, reliable, fast, and accurate characterization method is essential. Liposomes have low production cost, lack toxicity, and have innate versatility, representing promising new avenues for delivering food and nutraceuticals. Innovative methods are needed to characterize and standardize such food delivery systems because of the possibility of novel risks. Familiarity with the most recent developments in the characterization of liposomes could prove helpful. Moreover, these methods are not only limited to the characterization of liposomes but can also be used to describe other micro- or nanobased food and nutraceutical delivery systems.