基于omics的番木瓜(Selenicereus undatus L.)抗多因素非生物胁迫的GDSL基因特征、系统发育和褪黑激素介导的表达比较分析

IF 3.4 3区 生物学 Q1 PLANT SCIENCES Physiology and Molecular Biology of Plants Pub Date : 2024-09-05 DOI:10.1007/s12298-024-01506-w
Obaid Ullah Shah, Jiantao Peng, Lingling Zhou, Wasi Ullah Khan, Zhang Shanshan, Pan Zhuyu, Pingwu Liu, Latif Ullah Khan
{"title":"基于omics的番木瓜(Selenicereus undatus L.)抗多因素非生物胁迫的GDSL基因特征、系统发育和褪黑激素介导的表达比较分析","authors":"Obaid Ullah Shah, Jiantao Peng, Lingling Zhou, Wasi Ullah Khan, Zhang Shanshan, Pan Zhuyu, Pingwu Liu, Latif Ullah Khan","doi":"10.1007/s12298-024-01506-w","DOIUrl":null,"url":null,"abstract":"<p>The <i>GDSL</i> gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the <i>GDSL</i> in the pitaya plant are still unknown. Pitaya (<i>Selenicereus undatus</i> L.) also called <i>Hylocereus undatus</i> (Hu), belongs to the family <i>Cactaceae</i> and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 <i>HuGDSL</i> genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized <i>HuGDSL</i> genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum <i>HuGDSL</i> genes were under purifying selection pressure. The <i>cis</i>-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the <i>HuGDSL</i> gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive <i>HuGDSL</i> genes for RT-qPCR validation. After careful investigation, we identified five <i>HuGDSL</i> candidate genes (<i>HuGDSL-1/3/55/59,</i> and <i>HuGDSL-78</i>) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative omics-based characterization, phylogeny and melatonin-mediated expression analyses of GDSL genes in pitaya (Selenicereus undatus L.) against multifactorial abiotic stresses\",\"authors\":\"Obaid Ullah Shah, Jiantao Peng, Lingling Zhou, Wasi Ullah Khan, Zhang Shanshan, Pan Zhuyu, Pingwu Liu, Latif Ullah Khan\",\"doi\":\"10.1007/s12298-024-01506-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <i>GDSL</i> gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the <i>GDSL</i> in the pitaya plant are still unknown. Pitaya (<i>Selenicereus undatus</i> L.) also called <i>Hylocereus undatus</i> (Hu), belongs to the family <i>Cactaceae</i> and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 <i>HuGDSL</i> genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized <i>HuGDSL</i> genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum <i>HuGDSL</i> genes were under purifying selection pressure. The <i>cis</i>-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the <i>HuGDSL</i> gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive <i>HuGDSL</i> genes for RT-qPCR validation. After careful investigation, we identified five <i>HuGDSL</i> candidate genes (<i>HuGDSL-1/3/55/59,</i> and <i>HuGDSL-78</i>) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-024-01506-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01506-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

GDSL 基因家族在植物生长和发育过程中发挥着多种作用。尽管意义重大,但 GDSL 在番木瓜植物中的功能仍然未知。番木瓜(Selenicereus undatus L.)又称 Hylocereus undatus(Hu),属于仙人掌科,是一种重要的热带植物,含有大量膳食纤维和抗氧化剂。在本研究中,我们通过综合计算分析筛选了番木瓜基因组中的 91 个 HuGDSL 基因。系统发生树将 HuGDSL 基因与其他 4 个物种划分为 9 个不同的支系。此外,还发现了 29 个重复事件,其中 12 个是串联的,17 个是片段的。同源关系分析表明,在这些基因中,节段重复比串联重复更为突出。大多数重复基因对(95%)的 Ka/Ks 比率在 0.1 至 0.3 之间,这表明 HuGDSL 基因最大程度地受到了纯化选择压力。启动子区域的顺式作用元件含有丰富的植物激素,如辅助素、赤霉素、茉莉酸和脱落酸等。最后,通过RNA-seq分析了单胁迫和多胁迫下HuGDSL基因的表达模式。我们选择了十个胁迫响应的 HuGDSL 基因进行 RT-qPCR 验证。经过仔细研究,我们根据 RNA-seq 和 RT-qPCR 数据确定了五个 HuGDSL 候选基因(HuGDSL-1/3/55/59 和 HuGDSL-78),这些基因在胁迫和施用褪黑激素的幼苗中表达增强。这项研究为通过现代生物技术制备抗逆性番木瓜基因型来维持番木瓜的生长和发育提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative omics-based characterization, phylogeny and melatonin-mediated expression analyses of GDSL genes in pitaya (Selenicereus undatus L.) against multifactorial abiotic stresses

The GDSL gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the GDSL in the pitaya plant are still unknown. Pitaya (Selenicereus undatus L.) also called Hylocereus undatus (Hu), belongs to the family Cactaceae and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 HuGDSL genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized HuGDSL genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum HuGDSL genes were under purifying selection pressure. The cis-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the HuGDSL gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive HuGDSL genes for RT-qPCR validation. After careful investigation, we identified five HuGDSL candidate genes (HuGDSL-1/3/55/59, and HuGDSL-78) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
期刊最新文献
VfLRR-RLK1 benefiting resistance to Fusarium oxysporum reveals infection and defense mechanisms in tung tree. Allantoin regulated oxidative defense, secondary metabolism and ions homeostasis in maize (Zea mays L.) under heat stress. Arabidopsis GDH1 and GDH2 genes double knock-out results in a stay-green phenotype during dark-induced senescence. Effect of sodium selenite on the synthesis of glucosinolates and antioxidant capacity in Chinese cabbage (Brassica rapa L.ssp.pekinensis). Heterologous expression of AaLac1 gene in hairy roots and its role in secondary metabolism under PEG-induced osmotic stress condition in Artemisia annua L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1