负载介孔二氧化硅/聚(乳酸-乙醇酸)微球的多重交联蚕丝纤维素/羧甲基壳聚糖/海藻酸钠复合支架的制备与成骨。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-09-12 DOI:10.1177/08853282241281439
Yiwan Shi,Zhaozhen Wang,Weikang Xu,Xiaolu Yu,Botao Gao,Xinting Zhou,Jiwen Chen,Kunfeng Jia,Lek Hang Cheang,Man Seng Tam,Huajun Wang,Xiaofei Zheng,Tingting Wu
{"title":"负载介孔二氧化硅/聚(乳酸-乙醇酸)微球的多重交联蚕丝纤维素/羧甲基壳聚糖/海藻酸钠复合支架的制备与成骨。","authors":"Yiwan Shi,Zhaozhen Wang,Weikang Xu,Xiaolu Yu,Botao Gao,Xinting Zhou,Jiwen Chen,Kunfeng Jia,Lek Hang Cheang,Man Seng Tam,Huajun Wang,Xiaofei Zheng,Tingting Wu","doi":"10.1177/08853282241281439","DOIUrl":null,"url":null,"abstract":"Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"19 1","pages":"8853282241281439"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and osteogenesis of a multiple crosslinking silk fibroin/carboxymethyl chitosan/sodium alginate composite scaffold loading with mesoporous silica/poly (lactic acid-glycolic acid) microspheres.\",\"authors\":\"Yiwan Shi,Zhaozhen Wang,Weikang Xu,Xiaolu Yu,Botao Gao,Xinting Zhou,Jiwen Chen,Kunfeng Jia,Lek Hang Cheang,Man Seng Tam,Huajun Wang,Xiaofei Zheng,Tingting Wu\",\"doi\":\"10.1177/08853282241281439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\"19 1\",\"pages\":\"8853282241281439\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241281439\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241281439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

大面积骨缺损修复是整形外科面临的一项严峻挑战。目前,无机-有机复合支架被认为是一种很有前景的骨再生方法。硅离子(Si4+)具有生物活性,有利于骨再生,而含 Si4+ 的无机介孔二氧化硅(MS)能有效负载药物,用于骨修复。为了更好地控制药物释放,我们制备了可生物降解的 MS/PLGA (MP)微球。通过基因素和 Ca2+ 交联,进一步构建了负载 MP 的有机丝纤维素/羧甲基壳聚糖/海藻酸钠(MP/SF/CMCS/SA)复合支架。所有 MP/SF/CMCS/SA 支架都具有良好的膨胀能力、降解率和高孔隙率。1% 的 MP 能显著提高复合材料支架的抗压强度。此外,负载 MP 的支架显示出 Si4+ 和 Ca2+ 的持续释放。此外,MP/SF/CMCS/SA 支架的罗丹明(一种模型药物)释放率明显低于 MP。在培养大鼠骨髓间充质干细胞时,含有 1%MP的支架显示出良好的增殖、粘附和成骨分化能力。基于上述结果,在 SF/CMCS/SA 支架中添加 1%的 MP 是骨再生中药物释放的一种前瞻性方法,有望进一步应用于体内骨修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and osteogenesis of a multiple crosslinking silk fibroin/carboxymethyl chitosan/sodium alginate composite scaffold loading with mesoporous silica/poly (lactic acid-glycolic acid) microspheres.
Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Monoclonal antibodies against jellyfish collagen. Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. Antibacterial nonwoven materials in medicine and healthcare. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1