Dandan Niu,Danyang Zhou,Mengke Zhan,Lijing Lei,Jinhua Zhu,Xiuhua Liu
{"title":"γ-环糊精-金属有机框架作为反式-N-对香豆酰酪胺的载体:药物可溶性、稳定性和对α-葡萄糖苷酶抑制活性的研究。","authors":"Dandan Niu,Danyang Zhou,Mengke Zhan,Lijing Lei,Jinhua Zhu,Xiuhua Liu","doi":"10.1177/08853282241284106","DOIUrl":null,"url":null,"abstract":"γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"268 1","pages":"8853282241284106"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"γ-Cyclodextrin-metal organic framework as a carrier for trans-N-p-coumaroyltyramine: A study of drug solubability, stability, and inhibitory activity against α-glucosidase.\",\"authors\":\"Dandan Niu,Danyang Zhou,Mengke Zhan,Lijing Lei,Jinhua Zhu,Xiuhua Liu\",\"doi\":\"10.1177/08853282241284106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\"268 1\",\"pages\":\"8853282241284106\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241284106\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241284106","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
γ-Cyclodextrin-metal organic framework as a carrier for trans-N-p-coumaroyltyramine: A study of drug solubability, stability, and inhibitory activity against α-glucosidase.
γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.