电喷雾壳聚糖纳米球薄膜:评估分子量对理化性质的影响

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Coatings Pub Date : 2024-09-09 DOI:10.3390/coatings14091159
Bruna Farias, Francisca Rizzi, Rafael Gerhardt, Eduardo Ribeiro, Daiane Dias, Tito Roberto Cadaval, Luiz Antonio Pinto
{"title":"电喷雾壳聚糖纳米球薄膜:评估分子量对理化性质的影响","authors":"Bruna Farias, Francisca Rizzi, Rafael Gerhardt, Eduardo Ribeiro, Daiane Dias, Tito Roberto Cadaval, Luiz Antonio Pinto","doi":"10.3390/coatings14091159","DOIUrl":null,"url":null,"abstract":"This study explores the effect of chitosan molecular weight on the formation of chitosan-based films by electrospraying process. The oxidative pathway was employed in chitosan with 220.1 kDa to obtain samples with 124.5 and 52.7 kDa. Both samples of depolymerized chitosan resulted in spheres within electrosprayed chitosan-based films due to a higher deacetylation degree (~85%). The increase in molecular weight (52.7 to 124.5 kDa) resulted in nanospheres (562 nm) within electrosprayed chitosan-based films, enhancing the surface area-to-volume ratio of the material. The electrospraying process maintained the structural integrity and thermal stability of all chitosan-based films while reducing their crystallinity. These findings highlight the impact of chitosan properties, particularly molecular weight, on the physicochemical characteristics of electrosprayed chitosan-based films. For instance, this work provides insights for the application of electrosprayed chitosan-based films in various fields.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrosprayed Chitosan Nanospheres-Based Films: Evaluating the Effect of Molecular Weight on Physicochemical Properties\",\"authors\":\"Bruna Farias, Francisca Rizzi, Rafael Gerhardt, Eduardo Ribeiro, Daiane Dias, Tito Roberto Cadaval, Luiz Antonio Pinto\",\"doi\":\"10.3390/coatings14091159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the effect of chitosan molecular weight on the formation of chitosan-based films by electrospraying process. The oxidative pathway was employed in chitosan with 220.1 kDa to obtain samples with 124.5 and 52.7 kDa. Both samples of depolymerized chitosan resulted in spheres within electrosprayed chitosan-based films due to a higher deacetylation degree (~85%). The increase in molecular weight (52.7 to 124.5 kDa) resulted in nanospheres (562 nm) within electrosprayed chitosan-based films, enhancing the surface area-to-volume ratio of the material. The electrospraying process maintained the structural integrity and thermal stability of all chitosan-based films while reducing their crystallinity. These findings highlight the impact of chitosan properties, particularly molecular weight, on the physicochemical characteristics of electrosprayed chitosan-based films. For instance, this work provides insights for the application of electrosprayed chitosan-based films in various fields.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091159\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了壳聚糖分子量对电喷法形成壳聚糖薄膜的影响。采用氧化途径对 220.1 kDa 的壳聚糖进行解聚,得到 124.5 和 52.7 kDa 的样品。由于脱乙酰度较高(约 85%),两种解聚壳聚糖样品在电喷雾壳聚糖薄膜中都形成了球状。分子量的增加(从 52.7 kDa 到 124.5 kDa)在电喷雾壳聚糖薄膜中形成了纳米球(562 nm),提高了材料的表面积与体积比。电喷过程保持了所有壳聚糖薄膜的结构完整性和热稳定性,同时降低了它们的结晶度。这些发现凸显了壳聚糖特性(尤其是分子量)对电喷雾壳聚糖薄膜理化特性的影响。例如,这项工作为电喷雾壳聚糖薄膜在各个领域的应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrosprayed Chitosan Nanospheres-Based Films: Evaluating the Effect of Molecular Weight on Physicochemical Properties
This study explores the effect of chitosan molecular weight on the formation of chitosan-based films by electrospraying process. The oxidative pathway was employed in chitosan with 220.1 kDa to obtain samples with 124.5 and 52.7 kDa. Both samples of depolymerized chitosan resulted in spheres within electrosprayed chitosan-based films due to a higher deacetylation degree (~85%). The increase in molecular weight (52.7 to 124.5 kDa) resulted in nanospheres (562 nm) within electrosprayed chitosan-based films, enhancing the surface area-to-volume ratio of the material. The electrospraying process maintained the structural integrity and thermal stability of all chitosan-based films while reducing their crystallinity. These findings highlight the impact of chitosan properties, particularly molecular weight, on the physicochemical characteristics of electrosprayed chitosan-based films. For instance, this work provides insights for the application of electrosprayed chitosan-based films in various fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
期刊最新文献
The Construction of a Small-Caliber Barrel Wear Model and a Study of the Barrel Wear Rule Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite Shelf-Life Extension and Quality Changes of Fresh-Cut Apple via Sago and Soy-Oil-Based Edible Coatings Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1