分散敏感最优控制:通过序列凸编程实现基于条件风险值的尾部扁平化方法

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-08-26 DOI:10.1109/TCST.2024.3427910
Kazuya Echigo;Oliver Sheridan;Samuel Buckner;Behçet Açıkmeşe
{"title":"分散敏感最优控制:通过序列凸编程实现基于条件风险值的尾部扁平化方法","authors":"Kazuya Echigo;Oliver Sheridan;Samuel Buckner;Behçet Açıkmeşe","doi":"10.1109/TCST.2024.3427910","DOIUrl":null,"url":null,"abstract":"In this brief, we propose a sequential convex programming (SCP) framework for minimizing the terminal state dispersion of a stochastic dynamical system about a prescribed destination—an important property in high-risk contexts such as spacecraft landing. Our proposed approach seeks to minimize the conditional value-at-risk (CVaR) of the dispersion, thereby shifting the probability distribution away from the tails. This approach provides an optimization framework that is not overly conservative and can accurately capture more information about true distribution, compared with methods which consider only the expected value, or robust optimization methods. The main contribution of this brief is to present an approach that: 1) establishes an optimization problem with CVaR dispersion cost 2) approximated with one of the two novel surrogates which is then 3) solved using an efficient SCP algorithm. In 2), two approximation methods, a sampling approximation (SA) and a symmetric polytopic approximation (SPA), are introduced for transforming the stochastic objective function into a deterministic form. The accuracy of the SA increases with sample size at the cost of problem size and computation time. To overcome this, we introduce the SPA, which avoids sampling by using an alternative approximation and thus offers significant computational benefits. Monte Carlo simulations indicate that our proposed approaches minimize the CVaR of the dispersion successfully.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2468-2475"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion Sensitive Optimal Control: A Conditional Value-at-Risk-Based Tail Flattening Approach via Sequential Convex Programming\",\"authors\":\"Kazuya Echigo;Oliver Sheridan;Samuel Buckner;Behçet Açıkmeşe\",\"doi\":\"10.1109/TCST.2024.3427910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, we propose a sequential convex programming (SCP) framework for minimizing the terminal state dispersion of a stochastic dynamical system about a prescribed destination—an important property in high-risk contexts such as spacecraft landing. Our proposed approach seeks to minimize the conditional value-at-risk (CVaR) of the dispersion, thereby shifting the probability distribution away from the tails. This approach provides an optimization framework that is not overly conservative and can accurately capture more information about true distribution, compared with methods which consider only the expected value, or robust optimization methods. The main contribution of this brief is to present an approach that: 1) establishes an optimization problem with CVaR dispersion cost 2) approximated with one of the two novel surrogates which is then 3) solved using an efficient SCP algorithm. In 2), two approximation methods, a sampling approximation (SA) and a symmetric polytopic approximation (SPA), are introduced for transforming the stochastic objective function into a deterministic form. The accuracy of the SA increases with sample size at the cost of problem size and computation time. To overcome this, we introduce the SPA, which avoids sampling by using an alternative approximation and thus offers significant computational benefits. Monte Carlo simulations indicate that our proposed approaches minimize the CVaR of the dispersion successfully.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 6\",\"pages\":\"2468-2475\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10646472/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10646472/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们提出了一个顺序凸编程(SCP)框架,用于最小化随机动态系统关于规定目的地的终端状态离散度--这是航天器着陆等高风险情况下的一个重要特性。我们提出的方法旨在最小化分散的条件风险值 (CVaR),从而使概率分布远离尾部。与只考虑期望值的方法或稳健优化方法相比,这种方法提供了一个不过分保守的优化框架,并能准确捕捉真实分布的更多信息。本摘要的主要贡献在于提出了一种方法,它可以1) 建立一个具有 CVaR 分散成本的优化问题;2) 用两种新型代用方法中的一种进行近似;3) 然后使用高效的 SCP 算法进行求解。在 2) 中,引入了两种近似方法,即采样近似(SA)和对称多点近似(SPA),用于将随机目标函数转换为确定形式。抽样近似的精度随样本量的增加而提高,但代价是问题规模和计算时间的增加。为了克服这一问题,我们引入了 SPA,它通过使用另一种近似方法来避免采样,因此在计算上具有显著优势。蒙特卡罗模拟表明,我们提出的方法成功地将离散度的 CVaR 降到了最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dispersion Sensitive Optimal Control: A Conditional Value-at-Risk-Based Tail Flattening Approach via Sequential Convex Programming
In this brief, we propose a sequential convex programming (SCP) framework for minimizing the terminal state dispersion of a stochastic dynamical system about a prescribed destination—an important property in high-risk contexts such as spacecraft landing. Our proposed approach seeks to minimize the conditional value-at-risk (CVaR) of the dispersion, thereby shifting the probability distribution away from the tails. This approach provides an optimization framework that is not overly conservative and can accurately capture more information about true distribution, compared with methods which consider only the expected value, or robust optimization methods. The main contribution of this brief is to present an approach that: 1) establishes an optimization problem with CVaR dispersion cost 2) approximated with one of the two novel surrogates which is then 3) solved using an efficient SCP algorithm. In 2), two approximation methods, a sampling approximation (SA) and a symmetric polytopic approximation (SPA), are introduced for transforming the stochastic objective function into a deterministic form. The accuracy of the SA increases with sample size at the cost of problem size and computation time. To overcome this, we introduce the SPA, which avoids sampling by using an alternative approximation and thus offers significant computational benefits. Monte Carlo simulations indicate that our proposed approaches minimize the CVaR of the dispersion successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32 Table of Contents Predictive Control for Autonomous Driving With Uncertain, Multimodal Predictions High-Speed Interception Multicopter Control by Image-Based Visual Servoing Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1