基于 PXIe 的实时太赫兹无线通信与 LDPC 码的实验和性能分析

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Infrared, Millimeter, and Terahertz Waves Pub Date : 2024-08-17 DOI:10.1007/s10762-024-01007-7
Zhuoyu Zhang, Jiahui Wang, Yunchuan Liu, Zhe Yang, Cunlin Zhang, Jingsuo He
{"title":"基于 PXIe 的实时太赫兹无线通信与 LDPC 码的实验和性能分析","authors":"Zhuoyu Zhang, Jiahui Wang, Yunchuan Liu, Zhe Yang, Cunlin Zhang, Jingsuo He","doi":"10.1007/s10762-024-01007-7","DOIUrl":null,"url":null,"abstract":"<p>Conventional baseband processing techniques for communication must be adapted to the specificities of terahertz channels. Currently, there is limited research on channel coding applicable to terahertz bands, particularly in terms of performing real-time tests that differentiate them from offline processing. This paper presents a test platform for a 300 GHz wireless communication system based on the PXIe platform. The experiment utilizes a high-performance, low-complexity serial scheduling approach with the Minimum Sum-Log Likelihood Ratio Belief Propagation (MS-LLR-BP) soft decision decoding algorithm to test point-to-point real-time line-of-sight communication for low-density parity-check (LDPC) code communication systems. The results indicate that the implementation of LDPC coding in QPSK terahertz wireless transmission systems results in a performance enhancement of approximately 25–55% in bit error rate (BER), demonstrating the excellent performance of LDPC codes against terahertz channel fading. This highlights their potential in future ultra-high-speed communication systems.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and Performance Analysis on PXIe-Based Real-Time Terahertz Wireless Communication with LDPC Code\",\"authors\":\"Zhuoyu Zhang, Jiahui Wang, Yunchuan Liu, Zhe Yang, Cunlin Zhang, Jingsuo He\",\"doi\":\"10.1007/s10762-024-01007-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional baseband processing techniques for communication must be adapted to the specificities of terahertz channels. Currently, there is limited research on channel coding applicable to terahertz bands, particularly in terms of performing real-time tests that differentiate them from offline processing. This paper presents a test platform for a 300 GHz wireless communication system based on the PXIe platform. The experiment utilizes a high-performance, low-complexity serial scheduling approach with the Minimum Sum-Log Likelihood Ratio Belief Propagation (MS-LLR-BP) soft decision decoding algorithm to test point-to-point real-time line-of-sight communication for low-density parity-check (LDPC) code communication systems. The results indicate that the implementation of LDPC coding in QPSK terahertz wireless transmission systems results in a performance enhancement of approximately 25–55% in bit error rate (BER), demonstrating the excellent performance of LDPC codes against terahertz channel fading. This highlights their potential in future ultra-high-speed communication systems.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-01007-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-01007-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

传统的通信基带处理技术必须适应太赫兹信道的特殊性。目前,适用于太赫兹波段的信道编码研究还很有限,特别是在执行实时测试方面,与离线处理不同。本文介绍了基于 PXIe 平台的 300 GHz 无线通信系统测试平台。实验采用高性能、低复杂度的串行调度方法和最小和对数似然比信念传播(MS-LLR-BP)软决策解码算法,测试低密度奇偶校验(LDPC)码通信系统的点对点实时视距通信。结果表明,在 QPSK 太赫兹无线传输系统中实施 LDPC 编码可使误码率 (BER) 性能提高约 25-55%,证明了 LDPC 编码在对抗太赫兹信道衰落方面的卓越性能。这凸显了它们在未来超高速通信系统中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiment and Performance Analysis on PXIe-Based Real-Time Terahertz Wireless Communication with LDPC Code

Conventional baseband processing techniques for communication must be adapted to the specificities of terahertz channels. Currently, there is limited research on channel coding applicable to terahertz bands, particularly in terms of performing real-time tests that differentiate them from offline processing. This paper presents a test platform for a 300 GHz wireless communication system based on the PXIe platform. The experiment utilizes a high-performance, low-complexity serial scheduling approach with the Minimum Sum-Log Likelihood Ratio Belief Propagation (MS-LLR-BP) soft decision decoding algorithm to test point-to-point real-time line-of-sight communication for low-density parity-check (LDPC) code communication systems. The results indicate that the implementation of LDPC coding in QPSK terahertz wireless transmission systems results in a performance enhancement of approximately 25–55% in bit error rate (BER), demonstrating the excellent performance of LDPC codes against terahertz channel fading. This highlights their potential in future ultra-high-speed communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
期刊最新文献
Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry A 60-GHz Out-of-Phase Power Divider with WR-15 Standard Interface Based on Trapped Printed Gap Waveguide Technology Advanced Data Processing of THz-Time Domain Spectroscopy Data with Sinusoidally Moving Delay Lines Hard Rock Absorption Measurements in the W-Band Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1