网络应用程序代码生成前沿语言模型基准测试的启示

Yi Cui
{"title":"网络应用程序代码生成前沿语言模型基准测试的启示","authors":"Yi Cui","doi":"arxiv-2409.05177","DOIUrl":null,"url":null,"abstract":"This paper presents insights from evaluating 16 frontier large language\nmodels (LLMs) on the WebApp1K benchmark, a test suite designed to assess the\nability of LLMs to generate web application code. The results reveal that while\nall models possess similar underlying knowledge, their performance is\ndifferentiated by the frequency of mistakes they make. By analyzing lines of\ncode (LOC) and failure distributions, we find that writing correct code is more\ncomplex than generating incorrect code. Furthermore, prompt engineering shows\nlimited efficacy in reducing errors beyond specific cases. These findings\nsuggest that further advancements in coding LLM should emphasize on model\nreliability and mistake minimization.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights from Benchmarking Frontier Language Models on Web App Code Generation\",\"authors\":\"Yi Cui\",\"doi\":\"arxiv-2409.05177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents insights from evaluating 16 frontier large language\\nmodels (LLMs) on the WebApp1K benchmark, a test suite designed to assess the\\nability of LLMs to generate web application code. The results reveal that while\\nall models possess similar underlying knowledge, their performance is\\ndifferentiated by the frequency of mistakes they make. By analyzing lines of\\ncode (LOC) and failure distributions, we find that writing correct code is more\\ncomplex than generating incorrect code. Furthermore, prompt engineering shows\\nlimited efficacy in reducing errors beyond specific cases. These findings\\nsuggest that further advancements in coding LLM should emphasize on model\\nreliability and mistake minimization.\",\"PeriodicalId\":501278,\"journal\":{\"name\":\"arXiv - CS - Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在 WebApp1K 基准上对 16 个前沿大型语言模型(LLM)进行评估后得出的见解。WebApp1K 基准是一个测试套件,旨在评估 LLM 生成网络应用程序代码的能力。结果表明,虽然所有模型都拥有相似的基础知识,但它们的性能却因犯错频率的不同而有所区别。通过分析代码行数(LOC)和故障分布,我们发现编写正确代码比生成错误代码更加复杂。此外,提示工程在减少特定情况下的错误方面效果有限。这些发现表明,编码 LLM 的进一步发展应强调模型的可靠性和错误最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights from Benchmarking Frontier Language Models on Web App Code Generation
This paper presents insights from evaluating 16 frontier large language models (LLMs) on the WebApp1K benchmark, a test suite designed to assess the ability of LLMs to generate web application code. The results reveal that while all models possess similar underlying knowledge, their performance is differentiated by the frequency of mistakes they make. By analyzing lines of code (LOC) and failure distributions, we find that writing correct code is more complex than generating incorrect code. Furthermore, prompt engineering shows limited efficacy in reducing errors beyond specific cases. These findings suggest that further advancements in coding LLM should emphasize on model reliability and mistake minimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1