{"title":"通过表面粗糙度工程增强疏水性多孔螺吡喃共聚物表面的光电开关润湿特性","authors":"Niloofar Nekoonam, Franziska Dreher, Fadoua Mayoussi, Pang Zhu, Ralf Thomann, Ramin Montazeri, Sagar Bhagwat, Leonhard Hambitzer, Dorothea Helmer","doi":"10.1002/admi.202400396","DOIUrl":null,"url":null,"abstract":"Surfaces with photoswitchable wettability are of great interest for various applications such as smart coatings or liquid condensation. The photochromic ring opening reaction of spiropyran (SP) to merocyanine (MC) implies a high dipole moment change, making it interesting for photo‐controlled wetting properties. In addition to the material chemistry, surface wettability is influenced by the surface topography. Porous SP copolymers with various micro‐/nanostructures, that is, different submicron roughness, are fabricated via polymerization‐induced phase separation. The influence of the surface topography on the photoswitchable wetting properties is studied. Surfaces with arithmetic mean roughness (S<jats:sub>a</jats:sub>) below 150 nm exhibited a maximum static contact angle (SCA) photoswitch up to 16° from 124 ± 6° to 108 ± 4° upon UV exposure. While superhydrophobic surfaces with higher S<jats:sub>a</jats:sub> (157 – 608 nm) showed an insignificant SCA switch. The latter surfaces have a SCA above 150° and low CA hysteresis indicating small and insufficient contact with SP/MC surface asperities for the switch. With the optimized surfaces, photo‐controlled water condensation is studied on microscale and showed that the condensate droplets merged faster, and formed larger droplets pinned to the original contact lines on surfaces switched to the less hydrophobic state.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"3 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Photoswitchable Wetting Properties of Hydrophobic Porous Spiropyran Copolymer Surfaces Through Surface Roughness Engineering\",\"authors\":\"Niloofar Nekoonam, Franziska Dreher, Fadoua Mayoussi, Pang Zhu, Ralf Thomann, Ramin Montazeri, Sagar Bhagwat, Leonhard Hambitzer, Dorothea Helmer\",\"doi\":\"10.1002/admi.202400396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surfaces with photoswitchable wettability are of great interest for various applications such as smart coatings or liquid condensation. The photochromic ring opening reaction of spiropyran (SP) to merocyanine (MC) implies a high dipole moment change, making it interesting for photo‐controlled wetting properties. In addition to the material chemistry, surface wettability is influenced by the surface topography. Porous SP copolymers with various micro‐/nanostructures, that is, different submicron roughness, are fabricated via polymerization‐induced phase separation. The influence of the surface topography on the photoswitchable wetting properties is studied. Surfaces with arithmetic mean roughness (S<jats:sub>a</jats:sub>) below 150 nm exhibited a maximum static contact angle (SCA) photoswitch up to 16° from 124 ± 6° to 108 ± 4° upon UV exposure. While superhydrophobic surfaces with higher S<jats:sub>a</jats:sub> (157 – 608 nm) showed an insignificant SCA switch. The latter surfaces have a SCA above 150° and low CA hysteresis indicating small and insufficient contact with SP/MC surface asperities for the switch. With the optimized surfaces, photo‐controlled water condensation is studied on microscale and showed that the condensate droplets merged faster, and formed larger droplets pinned to the original contact lines on surfaces switched to the less hydrophobic state.\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admi.202400396\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400396","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Photoswitchable Wetting Properties of Hydrophobic Porous Spiropyran Copolymer Surfaces Through Surface Roughness Engineering
Surfaces with photoswitchable wettability are of great interest for various applications such as smart coatings or liquid condensation. The photochromic ring opening reaction of spiropyran (SP) to merocyanine (MC) implies a high dipole moment change, making it interesting for photo‐controlled wetting properties. In addition to the material chemistry, surface wettability is influenced by the surface topography. Porous SP copolymers with various micro‐/nanostructures, that is, different submicron roughness, are fabricated via polymerization‐induced phase separation. The influence of the surface topography on the photoswitchable wetting properties is studied. Surfaces with arithmetic mean roughness (Sa) below 150 nm exhibited a maximum static contact angle (SCA) photoswitch up to 16° from 124 ± 6° to 108 ± 4° upon UV exposure. While superhydrophobic surfaces with higher Sa (157 – 608 nm) showed an insignificant SCA switch. The latter surfaces have a SCA above 150° and low CA hysteresis indicating small and insufficient contact with SP/MC surface asperities for the switch. With the optimized surfaces, photo‐controlled water condensation is studied on microscale and showed that the condensate droplets merged faster, and formed larger droplets pinned to the original contact lines on surfaces switched to the less hydrophobic state.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.