LiCu0.5Fe2-yCeyO4 纳米星形铁氧体的晶粒尺寸对光介电性能的影响

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-09-12 DOI:10.1007/s10854-024-13461-z
Manal F. Abou Taleb, F. Afzal, Q. Hussain, Mohamed M. Ibrahim, Zeinhom M. El-Bahy, A. U. Rahman
{"title":"LiCu0.5Fe2-yCeyO4 纳米星形铁氧体的晶粒尺寸对光介电性能的影响","authors":"Manal F. Abou Taleb, F. Afzal, Q. Hussain, Mohamed M. Ibrahim, Zeinhom M. El-Bahy, A. U. Rahman","doi":"10.1007/s10854-024-13461-z","DOIUrl":null,"url":null,"abstract":"<p>This study explores the impact of crystallite size on the opto-dielectric properties of LiCu<sub>0.5</sub>Fe<sub>2-y</sub>Ce<sub>y</sub>O<sub>4</sub> (<i>y</i> = 0.0, 0.01, 0.02, 0.03, 0.04) nanospinel ferrites (NSFs) synthesized via sol–gel auto-combustion. X-ray diffraction (XRD) analysis confirmed the crystalline nature and phase purity, revealing variations in crystallite size within the nanoscale range. Fourier-transform infrared spectroscopy (FTIR) provided insights into chemical bonding, affirming the composition and structure reliability. Morphological characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the nanostructure, highlighting the influence of crystallite size on particle morphology, shape, and size distribution. Energy-dispersive X-ray spectroscopy (EDX) verified the presence of expected elements, with elemental composition offering spatial distribution insights. Inductively coupled plasma (ICP) analysis quantified elemental concentrations, focusing on Li, Cu, Fe, and Ce. Optical properties, including UV–vis absorption spectra, were measured to assess band gap energies. Dielectric measurements across a range of frequencies provided insights into the pure Li-Cu NSFs and Ce<sup>3+</sup> doped Li-Cu NSFs dielectric response, revealing variations in dielectric constant and loss tangent with changing crystallite size. The findings highlighted the significant role of crystallite size in modulating both energy band gap and dielectric properties, essential for applications in high-frequency, photonics, electronics, and sensor technologies.</p>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of crystallite size of LiCu0.5Fe2-yCeyO4 nanospinel ferrites on opto-dielectric properties\",\"authors\":\"Manal F. Abou Taleb, F. Afzal, Q. Hussain, Mohamed M. Ibrahim, Zeinhom M. El-Bahy, A. U. Rahman\",\"doi\":\"10.1007/s10854-024-13461-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the impact of crystallite size on the opto-dielectric properties of LiCu<sub>0.5</sub>Fe<sub>2-y</sub>Ce<sub>y</sub>O<sub>4</sub> (<i>y</i> = 0.0, 0.01, 0.02, 0.03, 0.04) nanospinel ferrites (NSFs) synthesized via sol–gel auto-combustion. X-ray diffraction (XRD) analysis confirmed the crystalline nature and phase purity, revealing variations in crystallite size within the nanoscale range. Fourier-transform infrared spectroscopy (FTIR) provided insights into chemical bonding, affirming the composition and structure reliability. Morphological characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the nanostructure, highlighting the influence of crystallite size on particle morphology, shape, and size distribution. Energy-dispersive X-ray spectroscopy (EDX) verified the presence of expected elements, with elemental composition offering spatial distribution insights. Inductively coupled plasma (ICP) analysis quantified elemental concentrations, focusing on Li, Cu, Fe, and Ce. Optical properties, including UV–vis absorption spectra, were measured to assess band gap energies. Dielectric measurements across a range of frequencies provided insights into the pure Li-Cu NSFs and Ce<sup>3+</sup> doped Li-Cu NSFs dielectric response, revealing variations in dielectric constant and loss tangent with changing crystallite size. The findings highlighted the significant role of crystallite size in modulating both energy band gap and dielectric properties, essential for applications in high-frequency, photonics, electronics, and sensor technologies.</p>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10854-024-13461-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10854-024-13461-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了晶体尺寸对通过溶胶-凝胶自动燃烧法合成的 LiCu0.5Fe2-yCeyO4(y = 0.0、0.01、0.02、0.03、0.04)纳米星形铁氧体(NSFs)光电特性的影响。X 射线衍射 (XRD) 分析证实了其晶体性质和相纯度,并揭示了纳米级范围内的晶体尺寸变化。傅立叶变换红外光谱(FTIR)提供了对化学键的深入了解,确认了组成和结构的可靠性。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行的形态表征揭示了纳米结构,突出了晶粒尺寸对颗粒形态、形状和尺寸分布的影响。能量色散 X 射线光谱(EDX)验证了预期元素的存在,元素组成提供了空间分布信息。电感耦合等离子体 (ICP) 分析量化了元素浓度,重点是锂、铜、铁和铈。对包括紫外-可见吸收光谱在内的光学特性进行了测量,以评估带隙能量。在一定频率范围内进行的介电测量有助于深入了解纯 Li-Cu NSFs 和掺杂 Ce3+ 的 Li-Cu NSFs 的介电响应,揭示了介电常数和损耗正切随晶体尺寸变化而产生的变化。这些发现强调了晶粒尺寸在调节能带隙和介电性能方面的重要作用,这对高频、光子学、电子学和传感器技术的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of crystallite size of LiCu0.5Fe2-yCeyO4 nanospinel ferrites on opto-dielectric properties

This study explores the impact of crystallite size on the opto-dielectric properties of LiCu0.5Fe2-yCeyO4 (y = 0.0, 0.01, 0.02, 0.03, 0.04) nanospinel ferrites (NSFs) synthesized via sol–gel auto-combustion. X-ray diffraction (XRD) analysis confirmed the crystalline nature and phase purity, revealing variations in crystallite size within the nanoscale range. Fourier-transform infrared spectroscopy (FTIR) provided insights into chemical bonding, affirming the composition and structure reliability. Morphological characterization via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the nanostructure, highlighting the influence of crystallite size on particle morphology, shape, and size distribution. Energy-dispersive X-ray spectroscopy (EDX) verified the presence of expected elements, with elemental composition offering spatial distribution insights. Inductively coupled plasma (ICP) analysis quantified elemental concentrations, focusing on Li, Cu, Fe, and Ce. Optical properties, including UV–vis absorption spectra, were measured to assess band gap energies. Dielectric measurements across a range of frequencies provided insights into the pure Li-Cu NSFs and Ce3+ doped Li-Cu NSFs dielectric response, revealing variations in dielectric constant and loss tangent with changing crystallite size. The findings highlighted the significant role of crystallite size in modulating both energy band gap and dielectric properties, essential for applications in high-frequency, photonics, electronics, and sensor technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Boosting energy storage properties of BNT-based relaxor ferroelectric ceramics via (Zn1/3Nb2/3)4+ complex ion doping Designing of Ti3C2Tx/NiCo-MOF nanocomposite electrode: a versatile platform for electrochemical-based energy storage devices Structural, optical and electrochemical properties of reduced graphene oxide-polyaniline composites for supercapacitor applications Achieving high energy storage performance through tolerance factor design in Bi0.5Na0.5TiO3 based ceramic Z-scheme CoWO4/g-C3N4 heterojunction for enhanced ultraviolet-light-driven photocatalytic activity towards the degradation of tetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1