{"title":"用于增强光催化应用的钴铁氧体-锰氧化物纳米复合材料的结构、形态、元素、光学和磁学特性综合研究","authors":"Dheeraj Yadav, Rajni Shukla","doi":"10.1007/s10854-024-13367-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis and comprehensive characterisation of Cobalt Ferrite-Manganese Oxide (CoFe<sub>2</sub>O<sub>4</sub>–Mn<sub>2</sub>O<sub>3</sub>) nanoparticles and their composites, aiming to explore their potential as effective photocatalysts for the degradation of methylene blue dye. The pure CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles were successfully synthesized via the coprecipitation method, while the composites were fabricated using the sonochemical method. The synthesized materials were thoroughly characterized using various techniques, including X-ray Diffraction (XRD) analysis that confirmed the formation of crystalline CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles with desired phase and high purity. Fourier transform infrared spectroscopy (FTIR) provided valuable information on the chemical bonding and functional groups present in the samples. Field emission scanning electron microscopy (FESEM) imaging exhibited the morphology and size distribution of the nanoparticles, while Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the elemental composition. Ultraviolet–visible (UV–Vis) spectroscopy revealed the optical properties of the materials, suggesting potential photocatalytic applications. Vibrating sample magnetometer (VSM) measurements demonstrated the magnetic properties of synthesized material, which could be advantageous for magnetic separation during the photocatalysis process. The photocatalytic performance of the material was evaluated in the degradation of methylene blue under UV light irradiation.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study on structural, morphological, elemental, optical and magnetic properties of cobalt ferrite-manganese oxide nanocomposites for enhanced photocatalytic application\",\"authors\":\"Dheeraj Yadav, Rajni Shukla\",\"doi\":\"10.1007/s10854-024-13367-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the synthesis and comprehensive characterisation of Cobalt Ferrite-Manganese Oxide (CoFe<sub>2</sub>O<sub>4</sub>–Mn<sub>2</sub>O<sub>3</sub>) nanoparticles and their composites, aiming to explore their potential as effective photocatalysts for the degradation of methylene blue dye. The pure CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles were successfully synthesized via the coprecipitation method, while the composites were fabricated using the sonochemical method. The synthesized materials were thoroughly characterized using various techniques, including X-ray Diffraction (XRD) analysis that confirmed the formation of crystalline CoFe<sub>2</sub>O<sub>4</sub> and Mn<sub>2</sub>O<sub>3</sub> nanoparticles with desired phase and high purity. Fourier transform infrared spectroscopy (FTIR) provided valuable information on the chemical bonding and functional groups present in the samples. Field emission scanning electron microscopy (FESEM) imaging exhibited the morphology and size distribution of the nanoparticles, while Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the elemental composition. Ultraviolet–visible (UV–Vis) spectroscopy revealed the optical properties of the materials, suggesting potential photocatalytic applications. Vibrating sample magnetometer (VSM) measurements demonstrated the magnetic properties of synthesized material, which could be advantageous for magnetic separation during the photocatalysis process. The photocatalytic performance of the material was evaluated in the degradation of methylene blue under UV light irradiation.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-13367-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13367-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了钴铁氧体-氧化锰(CoFe2O4-Mn2O3)纳米粒子及其复合材料的合成和综合表征,旨在探索它们作为有效光催化剂降解亚甲基蓝染料的潜力。通过共沉淀法成功合成了纯 CoFe2O4 和 Mn2O3 纳米粒子,并利用超声化学法制备了复合材料。利用各种技术对合成材料进行了全面表征,包括 X 射线衍射 (XRD) 分析,证实形成了具有所需相位和高纯度的结晶 CoFe2O4 和 Mn2O3 纳米粒子。傅立叶变换红外光谱(FTIR)为样品中存在的化学键和官能团提供了有价值的信息。场发射扫描电子显微镜(FESEM)成像显示了纳米粒子的形态和尺寸分布,而能量色散 X 射线光谱(EDS)分析则确认了元素组成。紫外-可见(UV-Vis)光谱显示了材料的光学特性,表明其具有潜在的光催化应用。振动样品磁力计(VSM)测量证明了合成材料的磁性,这可能有利于光催化过程中的磁性分离。在紫外线照射下降解亚甲基蓝的过程中,对材料的光催化性能进行了评估。
Comprehensive study on structural, morphological, elemental, optical and magnetic properties of cobalt ferrite-manganese oxide nanocomposites for enhanced photocatalytic application
This study presents the synthesis and comprehensive characterisation of Cobalt Ferrite-Manganese Oxide (CoFe2O4–Mn2O3) nanoparticles and their composites, aiming to explore their potential as effective photocatalysts for the degradation of methylene blue dye. The pure CoFe2O4 and Mn2O3 nanoparticles were successfully synthesized via the coprecipitation method, while the composites were fabricated using the sonochemical method. The synthesized materials were thoroughly characterized using various techniques, including X-ray Diffraction (XRD) analysis that confirmed the formation of crystalline CoFe2O4 and Mn2O3 nanoparticles with desired phase and high purity. Fourier transform infrared spectroscopy (FTIR) provided valuable information on the chemical bonding and functional groups present in the samples. Field emission scanning electron microscopy (FESEM) imaging exhibited the morphology and size distribution of the nanoparticles, while Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the elemental composition. Ultraviolet–visible (UV–Vis) spectroscopy revealed the optical properties of the materials, suggesting potential photocatalytic applications. Vibrating sample magnetometer (VSM) measurements demonstrated the magnetic properties of synthesized material, which could be advantageous for magnetic separation during the photocatalysis process. The photocatalytic performance of the material was evaluated in the degradation of methylene blue under UV light irradiation.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.