用于治疗伤口生物膜感染的工程噬菌体-聚合物纳米组件

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-09-17 DOI:10.1021/acsnano.4c08671
Jungmi Park, Muhammad Aamir Hassan, Ahmed Nabawy, Cheng Hsuan Li, Mingdi Jiang, Krupa Parmar, Annika Reddivari, Ritabrita Goswami, Taewon Jeon, Robin Patel, Vincent M. Rotello
{"title":"用于治疗伤口生物膜感染的工程噬菌体-聚合物纳米组件","authors":"Jungmi Park, Muhammad Aamir Hassan, Ahmed Nabawy, Cheng Hsuan Li, Mingdi Jiang, Krupa Parmar, Annika Reddivari, Ritabrita Goswami, Taewon Jeon, Robin Patel, Vincent M. Rotello","doi":"10.1021/acsnano.4c08671","DOIUrl":null,"url":null,"abstract":"The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of <i>Staphylococcus aureus</i>, including methicillin-resistant <i>S. aureus</i> (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log<sub>10</sub> bacterial reduction (∼99.9%) against MRSA biofilms <i>in vitro.</i> PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto <i>in vivo</i> wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log<sub>10</sub> reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections\",\"authors\":\"Jungmi Park, Muhammad Aamir Hassan, Ahmed Nabawy, Cheng Hsuan Li, Mingdi Jiang, Krupa Parmar, Annika Reddivari, Ritabrita Goswami, Taewon Jeon, Robin Patel, Vincent M. Rotello\",\"doi\":\"10.1021/acsnano.4c08671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of <i>Staphylococcus aureus</i>, including methicillin-resistant <i>S. aureus</i> (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log<sub>10</sub> bacterial reduction (∼99.9%) against MRSA biofilms <i>in vitro.</i> PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto <i>in vivo</i> wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log<sub>10</sub> reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08671\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

溶菌噬菌体(噬菌体)的抗菌功效和特异性使其成为治疗耐多药细菌感染的有前途的疗法。然而,噬菌体穿透生物膜保护基质的能力有限,这可能会限制它们对生物膜感染的疗效。在这里,研究人员利用工程聚合物生成了非共价噬菌体-聚合物纳米组装体(PPNs),这种组装体能穿透细菌生物膜并杀死常驻细菌。噬菌体 K 对多种金黄色葡萄球菌(包括耐甲氧西林金黄色葡萄球菌 (MRSA))具有活性,它与阳离子聚氧乙烯聚合物组装成 PPNs。与游离噬菌体相比,PPNs 保留了噬菌体的感染性,同时显示出更强的生物膜穿透力和杀伤力。在体外,PPNs 对 MRSA 生物膜的杀灭率达到 3-log10(99.9%)。然后将 PPN 加入 Poloxamer 407(P407)水凝胶中,并应用于体内伤口生物膜,显示出可控的持续释放效果。融入水凝胶的 PPN 在小鼠 MRSA 伤口生物膜模型中效果显著,细菌量减少了 1.5-log10,而 P407 水凝胶中的噬菌体 K 只减少了 0.5 log。总之,这项工作展示了用阳离子聚合物设计的噬菌体 K 在治疗伤口生物膜感染方面的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections
The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Liquid Metal Oxide-Assisted Integration of High-k Dielectrics and Metal Contacts for Two-Dimensional Electronics High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction Structure and Defect Identification at Self-Assembled Islands of CO2 Using Scanning Probe Microscopy Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide–Polymer Amphiphiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1