利用 4D-STEM 进行无监督机器学习和倒频谱分析,确定金属合金复杂微结构的特征

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-09-18 DOI:10.1038/s41524-024-01414-3
Timothy Yoo, Eitan Hershkovitz, Yang Yang, Flávia da Cruz Gallo, Michele V. Manuel, Honggyu Kim
{"title":"利用 4D-STEM 进行无监督机器学习和倒频谱分析,确定金属合金复杂微结构的特征","authors":"Timothy Yoo, Eitan Hershkovitz, Yang Yang, Flávia da Cruz Gallo, Michele V. Manuel, Honggyu Kim","doi":"10.1038/s41524-024-01414-3","DOIUrl":null,"url":null,"abstract":"<p>Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"8 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys\",\"authors\":\"Timothy Yoo, Eitan Hershkovitz, Yang Yang, Flávia da Cruz Gallo, Michele V. Manuel, Honggyu Kim\",\"doi\":\"10.1038/s41524-024-01414-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01414-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01414-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

四维扫描透射电子显微镜与大量数据分析相结合,揭示了对复杂材料的新见解。在这里,我们介绍了一种直接的无监督机器学习方法,它需要通过最小的超参数调整进行降维和聚类,从而半自动地识别金属合金中独特的共存结构。对原始衍射数据集进行倒频谱变换可有效地将相位信息与电子衍射图案中常见的样品倾斜度和厚度变化引起的潜在信号模糊性隔离开来,从而改进这一过程。在一项关于镍钛铝形状记忆合金的案例研究中,传统的扫描透射电子显微镜成像难以在较低的放大倍率下准确识别低对比度沉淀,这给微观分析带来了挑战。我们发现,我们的方法能有效分离多个相干结构,同时利用客观手段确定超参数。此外,我们还展示了聚类结果如何促进更稳健的应变映射,以提供即时和定量的结构见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys

Four-dimensional scanning transmission electron microscopy, coupled with a wide array of data analytics, has unveiled new insights into complex materials. Here, we introduce a straightforward unsupervised machine learning approach that entails dimensionality reduction and clustering with minimal hyperparameter tuning to semi-automatically identify unique coexisting structures in metallic alloys. Applying cepstral transformation to the original diffraction dataset improves this process by effectively isolating phase information from potential signal ambiguity caused by sample tilt and thickness variations, commonly observed in electron diffraction patterns. In a case study of a NiTiHfAl shape memory alloy, conventional scanning transmission electron microscopy imaging struggles to accurately identify a low-contrast precipitate at lower magnifications, posing challenges for microscale analyses. We find that our method efficiently separates multiple coherent structures while using objective means of determining hyperparameters. Furthermore, we demonstrate how the clustering result facilitates more robust strain mapping to provide immediate and quantitative structural insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Deep learning potential model of displacement damage in hafnium oxide ferroelectric films Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1