晶圆级和基底无关的 MoS2 纳米壁生长,用于在酸性和碱性介质中高效电催化制氢

Ziyang Gan , Rayantan Sadhukhan , Christof Neumann , Nandita Mohandas , Emad Najafidehaghani , Manuel Mundszinger , Johannes Biskupek , Ute Kaiser , Tharangattu N. Narayanan , Antony George , Andrey Turchanin
{"title":"晶圆级和基底无关的 MoS2 纳米壁生长,用于在酸性和碱性介质中高效电催化制氢","authors":"Ziyang Gan ,&nbsp;Rayantan Sadhukhan ,&nbsp;Christof Neumann ,&nbsp;Nandita Mohandas ,&nbsp;Emad Najafidehaghani ,&nbsp;Manuel Mundszinger ,&nbsp;Johannes Biskupek ,&nbsp;Ute Kaiser ,&nbsp;Tharangattu N. Narayanan ,&nbsp;Antony George ,&nbsp;Andrey Turchanin","doi":"10.1016/j.mtcata.2024.100060","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging as a promising alternative to expensive platinum-based catalysts for electrocatalytic hydrogen evolution reaction (HER), molybdenum disulfide (MoS<sub>2</sub>) stands out for its favourable thermodynamic properties. However, the catalytic activity of MoS<sub>2</sub> is mostly confined to its edges while the basal plane remains inactive, limiting practical applicability. Fabrication of stable MoS<sub>2</sub> structures with enhanced active sites on a given surface area still remains a complex task. Here we introduce a substrate-agnostic, metal-organic chemical vapour deposition (MOCVD) method for large-area 3D dendritic nanostructures of 2D MoS<sub>2</sub>, termed as “MoS<sub>2</sub> nanowalls”. Using scanning and transmission electron microscopy (SEM/TEM), we elucidate the growth mechanism of the MoS<sub>2</sub> nanowalls and their branched dendritic structure. Even subjected to extreme pH environments (0 and 14) during the HER, the grown MoS<sub>2</sub> nanowalls show remarkable stability even after &gt;170 hours of continuous operation and exhibit excellent catalytic activity with 10 mAcm<sup>−2</sup> current density achievable by applying low overpotentials (309±2 mV at pH = 0 and 272±2 mV at pH = 14). The presented large-area growth method for inexpensive MoS<sub>2</sub> nanowall based catalyst can pave the way for practical applications of water electrolysis cells operating at low voltages (≤1.5 V).</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"6 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949754X2400022X/pdfft?md5=3786ea9c0af59ae7ea78710e2288582f&pid=1-s2.0-S2949754X2400022X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wafer scale and substrate-agnostic growth of MoS2 nanowalls for efficient electrocatalytic hydrogen generation in acidic and alkaline media\",\"authors\":\"Ziyang Gan ,&nbsp;Rayantan Sadhukhan ,&nbsp;Christof Neumann ,&nbsp;Nandita Mohandas ,&nbsp;Emad Najafidehaghani ,&nbsp;Manuel Mundszinger ,&nbsp;Johannes Biskupek ,&nbsp;Ute Kaiser ,&nbsp;Tharangattu N. Narayanan ,&nbsp;Antony George ,&nbsp;Andrey Turchanin\",\"doi\":\"10.1016/j.mtcata.2024.100060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emerging as a promising alternative to expensive platinum-based catalysts for electrocatalytic hydrogen evolution reaction (HER), molybdenum disulfide (MoS<sub>2</sub>) stands out for its favourable thermodynamic properties. However, the catalytic activity of MoS<sub>2</sub> is mostly confined to its edges while the basal plane remains inactive, limiting practical applicability. Fabrication of stable MoS<sub>2</sub> structures with enhanced active sites on a given surface area still remains a complex task. Here we introduce a substrate-agnostic, metal-organic chemical vapour deposition (MOCVD) method for large-area 3D dendritic nanostructures of 2D MoS<sub>2</sub>, termed as “MoS<sub>2</sub> nanowalls”. Using scanning and transmission electron microscopy (SEM/TEM), we elucidate the growth mechanism of the MoS<sub>2</sub> nanowalls and their branched dendritic structure. Even subjected to extreme pH environments (0 and 14) during the HER, the grown MoS<sub>2</sub> nanowalls show remarkable stability even after &gt;170 hours of continuous operation and exhibit excellent catalytic activity with 10 mAcm<sup>−2</sup> current density achievable by applying low overpotentials (309±2 mV at pH = 0 and 272±2 mV at pH = 14). The presented large-area growth method for inexpensive MoS<sub>2</sub> nanowall based catalyst can pave the way for practical applications of water electrolysis cells operating at low voltages (≤1.5 V).</p></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"6 \",\"pages\":\"Article 100060\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949754X2400022X/pdfft?md5=3786ea9c0af59ae7ea78710e2288582f&pid=1-s2.0-S2949754X2400022X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X2400022X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X2400022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二硫化钼(MoS2)因其有利的热力学特性而脱颖而出,有望替代昂贵的铂基催化剂,用于电催化氢进化反应(HER)。然而,MoS2 的催化活性主要局限于其边缘,而基底面仍不活跃,这限制了其实际应用性。在给定的表面积上制造具有增强活性位点的稳定 MoS2 结构仍然是一项复杂的任务。在此,我们介绍一种与基底无关的金属有机化学气相沉积(MOCVD)方法,用于制备大面积的二维 MoS2 三维树枝状纳米结构,即 "MoS2 纳米墙"。我们利用扫描和透射电子显微镜(SEM/TEM)阐明了 MoS2 纳米壁的生长机制及其枝状树枝状结构。在 HER 生长过程中,即使受到极端 pH 值环境(0 和 14)的影响,生长出的 MoS2 纳米壁在连续工作 170 小时后仍表现出卓越的稳定性,并表现出出色的催化活性,通过施加低过电位(pH = 0 时为 309±2 mV,pH = 14 时为 272±2 mV)可达到 10 mAcm-2 的电流密度。所介绍的廉价 MoS2 纳米壁催化剂的大面积生长方法可为低电压(≤1.5 V)水电解槽的实际应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer scale and substrate-agnostic growth of MoS2 nanowalls for efficient electrocatalytic hydrogen generation in acidic and alkaline media

Emerging as a promising alternative to expensive platinum-based catalysts for electrocatalytic hydrogen evolution reaction (HER), molybdenum disulfide (MoS2) stands out for its favourable thermodynamic properties. However, the catalytic activity of MoS2 is mostly confined to its edges while the basal plane remains inactive, limiting practical applicability. Fabrication of stable MoS2 structures with enhanced active sites on a given surface area still remains a complex task. Here we introduce a substrate-agnostic, metal-organic chemical vapour deposition (MOCVD) method for large-area 3D dendritic nanostructures of 2D MoS2, termed as “MoS2 nanowalls”. Using scanning and transmission electron microscopy (SEM/TEM), we elucidate the growth mechanism of the MoS2 nanowalls and their branched dendritic structure. Even subjected to extreme pH environments (0 and 14) during the HER, the grown MoS2 nanowalls show remarkable stability even after >170 hours of continuous operation and exhibit excellent catalytic activity with 10 mAcm−2 current density achievable by applying low overpotentials (309±2 mV at pH = 0 and 272±2 mV at pH = 14). The presented large-area growth method for inexpensive MoS2 nanowall based catalyst can pave the way for practical applications of water electrolysis cells operating at low voltages (≤1.5 V).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1