Jiachen Liang , Shusheng Zhang , Changhong Xu , Yajun Zhang , Rui Huang , Hang Zhang , Zhen Wang
{"title":"一种基于异构图卷积网络检测工艺路线中工艺设计意图的方法","authors":"Jiachen Liang , Shusheng Zhang , Changhong Xu , Yajun Zhang , Rui Huang , Hang Zhang , Zhen Wang","doi":"10.1016/j.rcim.2024.102872","DOIUrl":null,"url":null,"abstract":"<div><p>The process design intent is the concentration of the technologists’ design cognitive process which contains the experiential knowledge and skills. It can reproduce technologists’ design thinking process in process design and provides guidance and interpretability for the generation of process results. The machining process route, as a core component of a part's entire manufacturing process, contains substantial process design intent. If the process design intent embedded in the existing process route can be explicitly identified, subsequent technologists will be able to learn and understand the original designers’ thinking, methodologies, and intents. This understanding enables effective reuse of design thinking and logic in the process design of new parts, rather than merely reusing data. It can also promote the propagation of the expertise and skills inherent in the process design intent. However, existing research on process design intent lacks a detailed explanation of its formation and specific structure from the design cognition perspective, making it challenging to effectively predict the process design intent containing interpretable empirical knowledge in the process route. To address this issue, this paper provides a method for predicting process design intent in the process route using heterogeneous graph convolutional networks. First, the heterogeneous graph is used to represent the parts and their associated process routes in the dataset. The nodes in the graph are then labeled based on accumulated and summarized process design intent. The prediction of process design intent in the process route is then converted into a node classification issue with heterogeneous graphs. A node classification network model is constructed using a heterogeneous graph convolutional network where the input is the created heterogeneous graph, and the output is the design reason contained in the machining feature and the intent cognition embedded in the working step, both of which are part of the process design intent. After training, the proposed model accurately predicted design reasons for machining features and intent cognitions for working steps (95.13 % and 96.85 %, respectively). Finally, examples of actual process routes are analyzed to verify the method's feasibility and reliability. The method given in this article can help technologists gain a deeper understanding of process route generation, hence improving their process design capabilities.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"92 ","pages":"Article 102872"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for detecting process design intent in the process route based on heterogeneous graph convolutional networks\",\"authors\":\"Jiachen Liang , Shusheng Zhang , Changhong Xu , Yajun Zhang , Rui Huang , Hang Zhang , Zhen Wang\",\"doi\":\"10.1016/j.rcim.2024.102872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The process design intent is the concentration of the technologists’ design cognitive process which contains the experiential knowledge and skills. It can reproduce technologists’ design thinking process in process design and provides guidance and interpretability for the generation of process results. The machining process route, as a core component of a part's entire manufacturing process, contains substantial process design intent. If the process design intent embedded in the existing process route can be explicitly identified, subsequent technologists will be able to learn and understand the original designers’ thinking, methodologies, and intents. This understanding enables effective reuse of design thinking and logic in the process design of new parts, rather than merely reusing data. It can also promote the propagation of the expertise and skills inherent in the process design intent. However, existing research on process design intent lacks a detailed explanation of its formation and specific structure from the design cognition perspective, making it challenging to effectively predict the process design intent containing interpretable empirical knowledge in the process route. To address this issue, this paper provides a method for predicting process design intent in the process route using heterogeneous graph convolutional networks. First, the heterogeneous graph is used to represent the parts and their associated process routes in the dataset. The nodes in the graph are then labeled based on accumulated and summarized process design intent. The prediction of process design intent in the process route is then converted into a node classification issue with heterogeneous graphs. A node classification network model is constructed using a heterogeneous graph convolutional network where the input is the created heterogeneous graph, and the output is the design reason contained in the machining feature and the intent cognition embedded in the working step, both of which are part of the process design intent. After training, the proposed model accurately predicted design reasons for machining features and intent cognitions for working steps (95.13 % and 96.85 %, respectively). Finally, examples of actual process routes are analyzed to verify the method's feasibility and reliability. The method given in this article can help technologists gain a deeper understanding of process route generation, hence improving their process design capabilities.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"92 \",\"pages\":\"Article 102872\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0736584524001595\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524001595","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A method for detecting process design intent in the process route based on heterogeneous graph convolutional networks
The process design intent is the concentration of the technologists’ design cognitive process which contains the experiential knowledge and skills. It can reproduce technologists’ design thinking process in process design and provides guidance and interpretability for the generation of process results. The machining process route, as a core component of a part's entire manufacturing process, contains substantial process design intent. If the process design intent embedded in the existing process route can be explicitly identified, subsequent technologists will be able to learn and understand the original designers’ thinking, methodologies, and intents. This understanding enables effective reuse of design thinking and logic in the process design of new parts, rather than merely reusing data. It can also promote the propagation of the expertise and skills inherent in the process design intent. However, existing research on process design intent lacks a detailed explanation of its formation and specific structure from the design cognition perspective, making it challenging to effectively predict the process design intent containing interpretable empirical knowledge in the process route. To address this issue, this paper provides a method for predicting process design intent in the process route using heterogeneous graph convolutional networks. First, the heterogeneous graph is used to represent the parts and their associated process routes in the dataset. The nodes in the graph are then labeled based on accumulated and summarized process design intent. The prediction of process design intent in the process route is then converted into a node classification issue with heterogeneous graphs. A node classification network model is constructed using a heterogeneous graph convolutional network where the input is the created heterogeneous graph, and the output is the design reason contained in the machining feature and the intent cognition embedded in the working step, both of which are part of the process design intent. After training, the proposed model accurately predicted design reasons for machining features and intent cognitions for working steps (95.13 % and 96.85 %, respectively). Finally, examples of actual process routes are analyzed to verify the method's feasibility and reliability. The method given in this article can help technologists gain a deeper understanding of process route generation, hence improving their process design capabilities.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.