{"title":"英格兰中部和格陵兰岛不同时间尺度气候变化的一致性","authors":"Rodion Stepanov , Dmitry Sokoloff , Peter Frick","doi":"10.1016/j.jastp.2024.106343","DOIUrl":null,"url":null,"abstract":"<div><p>Characteristic variations in the Greenland isotope temperature data over the last 1000 years and in the meteorological temperature measurements collected from Central England during the past four centuries have been analyzed. We take advantage of the continuous wavelet transform to analyze the simultaneous occurrence of temperature variations of different time scales. We assess the extent to which these phenomena can be compared when examining two different northern hemisphere locations at different time scales. Among the long-term variations, we focus on the cooling at the turn of the 18th century, which occurred slightly later in Greenland than in central England, and the warming observed at present. On the short time scale, the range under study is limited to times of the order of 5-10 years. It has been found that it is on these scales that temperature variations in the two locations are relatively consistent, with a cross-correlation coefficient as high as 0.6 for timescales of the order of 9 years. The main solar activity cycle also falls within the interval of significant correlations. It is shown that despite the absence of direct correlation between temperature and solar activity, the time dependence of the wavelet cross-correlation coefficient of the two temperature series on the scale of 11 years reproduces the long-term variations of solar activity.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106343"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistency of climatic changes at different time scales in Central England and Greenland\",\"authors\":\"Rodion Stepanov , Dmitry Sokoloff , Peter Frick\",\"doi\":\"10.1016/j.jastp.2024.106343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Characteristic variations in the Greenland isotope temperature data over the last 1000 years and in the meteorological temperature measurements collected from Central England during the past four centuries have been analyzed. We take advantage of the continuous wavelet transform to analyze the simultaneous occurrence of temperature variations of different time scales. We assess the extent to which these phenomena can be compared when examining two different northern hemisphere locations at different time scales. Among the long-term variations, we focus on the cooling at the turn of the 18th century, which occurred slightly later in Greenland than in central England, and the warming observed at present. On the short time scale, the range under study is limited to times of the order of 5-10 years. It has been found that it is on these scales that temperature variations in the two locations are relatively consistent, with a cross-correlation coefficient as high as 0.6 for timescales of the order of 9 years. The main solar activity cycle also falls within the interval of significant correlations. It is shown that despite the absence of direct correlation between temperature and solar activity, the time dependence of the wavelet cross-correlation coefficient of the two temperature series on the scale of 11 years reproduces the long-term variations of solar activity.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"264 \",\"pages\":\"Article 106343\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001718\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001718","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Consistency of climatic changes at different time scales in Central England and Greenland
Characteristic variations in the Greenland isotope temperature data over the last 1000 years and in the meteorological temperature measurements collected from Central England during the past four centuries have been analyzed. We take advantage of the continuous wavelet transform to analyze the simultaneous occurrence of temperature variations of different time scales. We assess the extent to which these phenomena can be compared when examining two different northern hemisphere locations at different time scales. Among the long-term variations, we focus on the cooling at the turn of the 18th century, which occurred slightly later in Greenland than in central England, and the warming observed at present. On the short time scale, the range under study is limited to times of the order of 5-10 years. It has been found that it is on these scales that temperature variations in the two locations are relatively consistent, with a cross-correlation coefficient as high as 0.6 for timescales of the order of 9 years. The main solar activity cycle also falls within the interval of significant correlations. It is shown that despite the absence of direct correlation between temperature and solar activity, the time dependence of the wavelet cross-correlation coefficient of the two temperature series on the scale of 11 years reproduces the long-term variations of solar activity.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.