{"title":"多孔介质中卡逊流体停滞点的磁流体力学生物对流:交叉扩散效应和热量产生","authors":"Snehal Patel , Harshad R. Patel","doi":"10.1016/j.jppr.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effect of heat production and radiation absorption on the magnetohydrodynamic Casson fluid flow at the stagnation point in a porous medium. We convert the group of fluid flow equations, which are non-linear partial differential equations with suitable boundary constraints, into a set of non-linear ordinary differential equations using similarity transformations. The homotopy analysis method (HAM) solves the converted system of ordinary differential equations. We draw graphs for numerous values of non-dimensional parameters and tables of surface drag force, rates of heat transfer, and mass transfer to analyze the relationship between velocity field, temperature field, concentration field, and other essential parameters involved in the study. We have proven that the Dufour number, radiation parameter, and heat generation parameter elevate the fluid temperature, whereas the magnetic parameter lowers it. The Casson fluid parameter, buoyancy force parameter, and mixed convection parameter all promote fluid movement throughout the flow field. The presented tabular data allows us to see the trend of heat and mass transfer rates, as well as drag force rates, against important parameters, enhancing our understanding of these rates.</div></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"13 3","pages":"Pages 445-457"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetohydrodynamics bio-convection flow at Casson fluid stagnation point in porous medium: Cross-diffusion effect and heat production\",\"authors\":\"Snehal Patel , Harshad R. Patel\",\"doi\":\"10.1016/j.jppr.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effect of heat production and radiation absorption on the magnetohydrodynamic Casson fluid flow at the stagnation point in a porous medium. We convert the group of fluid flow equations, which are non-linear partial differential equations with suitable boundary constraints, into a set of non-linear ordinary differential equations using similarity transformations. The homotopy analysis method (HAM) solves the converted system of ordinary differential equations. We draw graphs for numerous values of non-dimensional parameters and tables of surface drag force, rates of heat transfer, and mass transfer to analyze the relationship between velocity field, temperature field, concentration field, and other essential parameters involved in the study. We have proven that the Dufour number, radiation parameter, and heat generation parameter elevate the fluid temperature, whereas the magnetic parameter lowers it. The Casson fluid parameter, buoyancy force parameter, and mixed convection parameter all promote fluid movement throughout the flow field. The presented tabular data allows us to see the trend of heat and mass transfer rates, as well as drag force rates, against important parameters, enhancing our understanding of these rates.</div></div>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"13 3\",\"pages\":\"Pages 445-457\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212540X24000506\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X24000506","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Magnetohydrodynamics bio-convection flow at Casson fluid stagnation point in porous medium: Cross-diffusion effect and heat production
This study examines the effect of heat production and radiation absorption on the magnetohydrodynamic Casson fluid flow at the stagnation point in a porous medium. We convert the group of fluid flow equations, which are non-linear partial differential equations with suitable boundary constraints, into a set of non-linear ordinary differential equations using similarity transformations. The homotopy analysis method (HAM) solves the converted system of ordinary differential equations. We draw graphs for numerous values of non-dimensional parameters and tables of surface drag force, rates of heat transfer, and mass transfer to analyze the relationship between velocity field, temperature field, concentration field, and other essential parameters involved in the study. We have proven that the Dufour number, radiation parameter, and heat generation parameter elevate the fluid temperature, whereas the magnetic parameter lowers it. The Casson fluid parameter, buoyancy force parameter, and mixed convection parameter all promote fluid movement throughout the flow field. The presented tabular data allows us to see the trend of heat and mass transfer rates, as well as drag force rates, against important parameters, enhancing our understanding of these rates.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.