Azhar Iqbal , Taswar Abbas , Adil Jhangeer , Azeem Shahzad , Ijaz Ali , Umer Hayat
{"title":"具有焦耳热效应的纳米铜-乙二醇在径向拉伸薄片上的非稳态流动行为的数值研究","authors":"Azhar Iqbal , Taswar Abbas , Adil Jhangeer , Azeem Shahzad , Ijaz Ali , Umer Hayat","doi":"10.1016/j.nanoso.2024.101334","DOIUrl":null,"url":null,"abstract":"<div><p>This article proposes a mathematical investigation of unsteady flow and heat transfer in the presence of Joule Heating over a radially stretching sheet using a nanofluid of Cu-Ethylene glycol. With an extensive numerical study, we reveal the novel interaction between the shape factors of nanoparticles and surface deformations brought about by stretching. As opposed to earlier studies that have mostly concentrated on traditional nanoparticle forms, our investigation methodically looks at the unique behaviors of Cu-EG nanoparticles on stretching surfaces. The research findings offer great potential for numerous practical applications, in addition to providing insight into basic concepts related to fluid dynamics and heat transfer. The solution to this issue is significant for enhancing thermal management in manufacturing environments, such as cooling systems used in aerospace and electronics. Therefore, our work establishes a foundation for novel methods of creating materials with customized qualities, opening the door for the creation of next-generation technologies that are more sustainable and functional. A numerical solution of the highly non-linear ordinary differential equation is attained with suitable boundary conditions by applying BVP4C in MATLAB. Impact of pertinent parameters on Cu-Ethylene glycol nanofluid Joule Heating concentration, as well as Eckert, Prandtl, and Biot-number on flow and heat transport, are studied. Important results show that the Joule Heating effect raises the total heat transfer rate by roughly 15 %, and the addition of Cu nanoparticles improves thermal conductivity by around 22 %. The findings show that the combined influences of Joule Heating and nanoparticle concentration greatly increase the heat transfer efficiency, offering important new information for the optimization of cooling systems in a range of industrial applications. Finding of the current study is that the shape factor of platelets effectively transfers heat and flow, with sphere forms convey the least amount of heat.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101334"},"PeriodicalIF":5.4500,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of unsteady flow behavior of Cu-ethylene glycol nanoparticle on radially stretching sheet with Joule Heating effect\",\"authors\":\"Azhar Iqbal , Taswar Abbas , Adil Jhangeer , Azeem Shahzad , Ijaz Ali , Umer Hayat\",\"doi\":\"10.1016/j.nanoso.2024.101334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article proposes a mathematical investigation of unsteady flow and heat transfer in the presence of Joule Heating over a radially stretching sheet using a nanofluid of Cu-Ethylene glycol. With an extensive numerical study, we reveal the novel interaction between the shape factors of nanoparticles and surface deformations brought about by stretching. As opposed to earlier studies that have mostly concentrated on traditional nanoparticle forms, our investigation methodically looks at the unique behaviors of Cu-EG nanoparticles on stretching surfaces. The research findings offer great potential for numerous practical applications, in addition to providing insight into basic concepts related to fluid dynamics and heat transfer. The solution to this issue is significant for enhancing thermal management in manufacturing environments, such as cooling systems used in aerospace and electronics. Therefore, our work establishes a foundation for novel methods of creating materials with customized qualities, opening the door for the creation of next-generation technologies that are more sustainable and functional. A numerical solution of the highly non-linear ordinary differential equation is attained with suitable boundary conditions by applying BVP4C in MATLAB. Impact of pertinent parameters on Cu-Ethylene glycol nanofluid Joule Heating concentration, as well as Eckert, Prandtl, and Biot-number on flow and heat transport, are studied. Important results show that the Joule Heating effect raises the total heat transfer rate by roughly 15 %, and the addition of Cu nanoparticles improves thermal conductivity by around 22 %. The findings show that the combined influences of Joule Heating and nanoparticle concentration greatly increase the heat transfer efficiency, offering important new information for the optimization of cooling systems in a range of industrial applications. Finding of the current study is that the shape factor of platelets effectively transfers heat and flow, with sphere forms convey the least amount of heat.</p></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101334\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Numerical study of unsteady flow behavior of Cu-ethylene glycol nanoparticle on radially stretching sheet with Joule Heating effect
This article proposes a mathematical investigation of unsteady flow and heat transfer in the presence of Joule Heating over a radially stretching sheet using a nanofluid of Cu-Ethylene glycol. With an extensive numerical study, we reveal the novel interaction between the shape factors of nanoparticles and surface deformations brought about by stretching. As opposed to earlier studies that have mostly concentrated on traditional nanoparticle forms, our investigation methodically looks at the unique behaviors of Cu-EG nanoparticles on stretching surfaces. The research findings offer great potential for numerous practical applications, in addition to providing insight into basic concepts related to fluid dynamics and heat transfer. The solution to this issue is significant for enhancing thermal management in manufacturing environments, such as cooling systems used in aerospace and electronics. Therefore, our work establishes a foundation for novel methods of creating materials with customized qualities, opening the door for the creation of next-generation technologies that are more sustainable and functional. A numerical solution of the highly non-linear ordinary differential equation is attained with suitable boundary conditions by applying BVP4C in MATLAB. Impact of pertinent parameters on Cu-Ethylene glycol nanofluid Joule Heating concentration, as well as Eckert, Prandtl, and Biot-number on flow and heat transport, are studied. Important results show that the Joule Heating effect raises the total heat transfer rate by roughly 15 %, and the addition of Cu nanoparticles improves thermal conductivity by around 22 %. The findings show that the combined influences of Joule Heating and nanoparticle concentration greatly increase the heat transfer efficiency, offering important new information for the optimization of cooling systems in a range of industrial applications. Finding of the current study is that the shape factor of platelets effectively transfers heat and flow, with sphere forms convey the least amount of heat.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .