Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente
{"title":"多室微血管化肿瘤芯片用于研究卵巢癌中肿瘤与基质之间的相互作用和耐药性","authors":"Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente","doi":"10.1007/s12195-024-00817-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer\",\"authors\":\"Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente\",\"doi\":\"10.1007/s12195-024-00817-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-024-00817-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00817-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer
Introduction
The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.
Methods
We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).
Results
The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.
Conclusions
Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.