Michał Ślęzak, Tobias Wagner, Venkata Krishna Bharadwaj, Olena Gomonay, Anna Kozioł-Rachwał, Tevfik Onur Menteş, Andrea Locatelli, Marcin Zając, Dorota Wilgocka-Ślęzak, Piotr Dróżdż, Tomasz Ślęzak
{"title":"从磁静力学到拓扑学:氧化镍-铁纳米结构中的反铁磁涡旋态","authors":"Michał Ślęzak, Tobias Wagner, Venkata Krishna Bharadwaj, Olena Gomonay, Anna Kozioł-Rachwał, Tevfik Onur Menteş, Andrea Locatelli, Marcin Zając, Dorota Wilgocka-Ślęzak, Piotr Dróżdż, Tomasz Ślęzak","doi":"10.1002/admi.202400309","DOIUrl":null,"url":null,"abstract":"<p>Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 31","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400309","citationCount":"0","resultStr":"{\"title\":\"From Magnetostatics to Topology: Antiferromagnetic Vortex States in NiO-Fe Nanostructures\",\"authors\":\"Michał Ślęzak, Tobias Wagner, Venkata Krishna Bharadwaj, Olena Gomonay, Anna Kozioł-Rachwał, Tevfik Onur Menteş, Andrea Locatelli, Marcin Zając, Dorota Wilgocka-Ślęzak, Piotr Dróżdż, Tomasz Ślęzak\",\"doi\":\"10.1002/admi.202400309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"11 31\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400309\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400309\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
From Magnetostatics to Topology: Antiferromagnetic Vortex States in NiO-Fe Nanostructures
Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.