{"title":"用搅拌摩擦管沉积技术制备的泡沫的机械和冶金性能","authors":"Mandeep Kumar, Ratnesh Kumar Raj Singh, Vivek Jain","doi":"10.1007/s11665-024-09961-y","DOIUrl":null,"url":null,"abstract":"<p>This research seeks to create tube-based aluminum foam using friction stir tube deposition (FSTD) process. In this process, AA6063 consumable rods, pre-filled with a mixture of titanium hydride and aluminum powder, are deposited into a hollow mild steel tube using a conventional vertical milling machine. The results indicate that consumable rods with 12 pre-drilled holes ensure a more uniform distribution of the foaming agent. Furthermore, the study shows that increasing the tool’s rotational speed and the weight percentage of titanium hydride results in larger pore sizes and greater porosity. Specifically, for the same TiH<sub>2</sub> composition and rpm levels, the 12-hole filling strategy enhances porosity by 42.62 and 10.12% compared to the 8-hole and 10-hole methods. The optimal process parameters for developing aluminum foam are identified as using consumable rods with 12 holes containing 60% TiH<sub>2</sub> and a rotational speed of 1400 rpm.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"206 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique\",\"authors\":\"Mandeep Kumar, Ratnesh Kumar Raj Singh, Vivek Jain\",\"doi\":\"10.1007/s11665-024-09961-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research seeks to create tube-based aluminum foam using friction stir tube deposition (FSTD) process. In this process, AA6063 consumable rods, pre-filled with a mixture of titanium hydride and aluminum powder, are deposited into a hollow mild steel tube using a conventional vertical milling machine. The results indicate that consumable rods with 12 pre-drilled holes ensure a more uniform distribution of the foaming agent. Furthermore, the study shows that increasing the tool’s rotational speed and the weight percentage of titanium hydride results in larger pore sizes and greater porosity. Specifically, for the same TiH<sub>2</sub> composition and rpm levels, the 12-hole filling strategy enhances porosity by 42.62 and 10.12% compared to the 8-hole and 10-hole methods. The optimal process parameters for developing aluminum foam are identified as using consumable rods with 12 holes containing 60% TiH<sub>2</sub> and a rotational speed of 1400 rpm.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-09961-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09961-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
This research seeks to create tube-based aluminum foam using friction stir tube deposition (FSTD) process. In this process, AA6063 consumable rods, pre-filled with a mixture of titanium hydride and aluminum powder, are deposited into a hollow mild steel tube using a conventional vertical milling machine. The results indicate that consumable rods with 12 pre-drilled holes ensure a more uniform distribution of the foaming agent. Furthermore, the study shows that increasing the tool’s rotational speed and the weight percentage of titanium hydride results in larger pore sizes and greater porosity. Specifically, for the same TiH2 composition and rpm levels, the 12-hole filling strategy enhances porosity by 42.62 and 10.12% compared to the 8-hole and 10-hole methods. The optimal process parameters for developing aluminum foam are identified as using consumable rods with 12 holes containing 60% TiH2 and a rotational speed of 1400 rpm.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered