用于临床前治疗性放射性药物开发的 155Tb 和 161Tb 定量 SPECT 成像

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2024-09-14 DOI:10.1186/s40658-024-00682-8
Helena Koniar, Scott McNeil, Luke Wharton, Aidan Ingham, Michiel Van de Voorde, Maarten Ooms, Sathiya Sekar, Cristina Rodríguez-Rodríguez, Peter Kunz, Valery Radchenko, Arman Rahmim, Carlos Uribe, Hua Yang, Paul Schaffer
{"title":"用于临床前治疗性放射性药物开发的 155Tb 和 161Tb 定量 SPECT 成像","authors":"Helena Koniar, Scott McNeil, Luke Wharton, Aidan Ingham, Michiel Van de Voorde, Maarten Ooms, Sathiya Sekar, Cristina Rodríguez-Rodríguez, Peter Kunz, Valery Radchenko, Arman Rahmim, Carlos Uribe, Hua Yang, Paul Schaffer","doi":"10.1186/s40658-024-00682-8","DOIUrl":null,"url":null,"abstract":"Element-equivalent matched theranostic pairs facilitate quantitative in vivo imaging to establish pharmacokinetics and dosimetry estimates in the development of preclinical radiopharmaceuticals. Terbium radionuclides have significant potential as matched theranostic pairs for multipurpose applications in nuclear medicine. In particular, 155Tb (t1/2 = 5.32 d) and 161Tb (t1/2 = 6.89 d) have been proposed as a theranostic pair for their respective applications in single photon emission computed tomography (SPECT) imaging and targeted beta therapy. Our study assessed the performance of preclinical quantitative SPECT imaging with 155Tb and 161Tb. A hot rod resolution phantom with rod diameters ranging between 0.85 and 1.70 mm was filled with either 155Tb (21.8 ± 1.7 MBq/mL) or 161Tb (23.6 ± 1.9 MBq/mL) and scanned with the VECTor preclinical SPECT/CT scanner. Image performance was evaluated with two collimators: a high energy ultra high resolution (HEUHR) collimator and an extra ultra high sensitivity (UHS) collimator. SPECT images were reconstructed from photopeaks at 43.0 keV, 86.6 keV, and 105.3 keV for 155Tb and 48.9 keV and 74.6 keV for 161Tb. Quantitative SPECT images of the resolution phantoms were analyzed to report inter-rod contrast, recovery coefficients, and contrast-to-noise metrics. Quantitative SPECT images of the resolution phantom established that the HEUHR collimator resolved all rods for 155Tb and 161Tb, and the UHS collimator resolved rods ≥ 1.10 mm for 161Tb and ≥ 1.30 mm for 155Tb. The HEUHR collimator maintained better quantitative accuracy than the UHS collimator with recovery coefficients up to 92%. Contrast-to-noise metrics were also superior with the HEUHR collimator. Both 155Tb and 161Tb demonstrated potential for applications in preclinical quantitative SPECT imaging. The high-resolution collimator achieves < 0.85 mm resolution and maintains quantitative accuracy in small volumes which is advantageous for assessing sub organ activity distributions in small animals. This imaging method can provide critical quantitative information for assessing and optimizing preclinical Tb-radiopharmaceuticals.","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative SPECT imaging of 155Tb and 161Tb for preclinical theranostic radiopharmaceutical development\",\"authors\":\"Helena Koniar, Scott McNeil, Luke Wharton, Aidan Ingham, Michiel Van de Voorde, Maarten Ooms, Sathiya Sekar, Cristina Rodríguez-Rodríguez, Peter Kunz, Valery Radchenko, Arman Rahmim, Carlos Uribe, Hua Yang, Paul Schaffer\",\"doi\":\"10.1186/s40658-024-00682-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Element-equivalent matched theranostic pairs facilitate quantitative in vivo imaging to establish pharmacokinetics and dosimetry estimates in the development of preclinical radiopharmaceuticals. Terbium radionuclides have significant potential as matched theranostic pairs for multipurpose applications in nuclear medicine. In particular, 155Tb (t1/2 = 5.32 d) and 161Tb (t1/2 = 6.89 d) have been proposed as a theranostic pair for their respective applications in single photon emission computed tomography (SPECT) imaging and targeted beta therapy. Our study assessed the performance of preclinical quantitative SPECT imaging with 155Tb and 161Tb. A hot rod resolution phantom with rod diameters ranging between 0.85 and 1.70 mm was filled with either 155Tb (21.8 ± 1.7 MBq/mL) or 161Tb (23.6 ± 1.9 MBq/mL) and scanned with the VECTor preclinical SPECT/CT scanner. Image performance was evaluated with two collimators: a high energy ultra high resolution (HEUHR) collimator and an extra ultra high sensitivity (UHS) collimator. SPECT images were reconstructed from photopeaks at 43.0 keV, 86.6 keV, and 105.3 keV for 155Tb and 48.9 keV and 74.6 keV for 161Tb. Quantitative SPECT images of the resolution phantoms were analyzed to report inter-rod contrast, recovery coefficients, and contrast-to-noise metrics. Quantitative SPECT images of the resolution phantom established that the HEUHR collimator resolved all rods for 155Tb and 161Tb, and the UHS collimator resolved rods ≥ 1.10 mm for 161Tb and ≥ 1.30 mm for 155Tb. The HEUHR collimator maintained better quantitative accuracy than the UHS collimator with recovery coefficients up to 92%. Contrast-to-noise metrics were also superior with the HEUHR collimator. Both 155Tb and 161Tb demonstrated potential for applications in preclinical quantitative SPECT imaging. The high-resolution collimator achieves < 0.85 mm resolution and maintains quantitative accuracy in small volumes which is advantageous for assessing sub organ activity distributions in small animals. This imaging method can provide critical quantitative information for assessing and optimizing preclinical Tb-radiopharmaceuticals.\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00682-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00682-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

元素等效的匹配治疗剂对有助于在临床前放射性药物开发过程中进行定量体内成像,以确定药代动力学和剂量估算。铽放射性核素作为匹配治疗剂对在核医学中的多用途应用具有巨大潜力。特别是,155Tb(t1/2 = 5.32 d)和161Tb(t1/2 = 6.89 d)已被提议作为治疗剂对,分别应用于单光子发射计算机断层扫描(SPECT)成像和靶向β治疗。我们的研究评估了 155Tb 和 161Tb 临床前定量 SPECT 成像的性能。在一个热棒分辨率模型中填充了 155Tb(21.8 ± 1.7 MBq/mL)或 161Tb(23.6 ± 1.9 MBq/mL),热棒直径在 0.85 至 1.70 毫米之间,并使用 VECTor 临床前 SPECT/CT 扫描仪进行扫描。使用两种准直器对图像性能进行了评估:一种是高能量超高分辨率(HEUHR)准直器,另一种是超高灵敏度(UHS)准直器。根据 155Tb 在 43.0 keV、86.6 keV 和 105.3 keV 以及 161Tb 在 48.9 keV 和 74.6 keV 的光峰重建了 SPECT 图像。对分辨率模型的定量 SPECT 图像进行了分析,以报告杆间对比度、恢复系数和对比度-噪声指标。分辨率模型的定量 SPECT 图像显示,HEUHR 准直器可分辨出 155Tb 和 161Tb 的所有杆,UHS 准直器可分辨出 161Tb ≥ 1.10 毫米和 155Tb ≥ 1.30 毫米的杆。HEUHR 准直器比 UHS 准直器保持了更好的定量准确性,恢复系数高达 92%。HEUHR 准直器的对比度-噪声指标也更好。155Tb 和 161Tb 都显示出在临床前定量 SPECT 成像中的应用潜力。高分辨率准直器的分辨率小于 0.85 毫米,能在小体积内保持定量的准确性,这对于评估小动物亚器官的活动分布非常有利。这种成像方法可为临床前结核放射性药物的评估和优化提供重要的定量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative SPECT imaging of 155Tb and 161Tb for preclinical theranostic radiopharmaceutical development
Element-equivalent matched theranostic pairs facilitate quantitative in vivo imaging to establish pharmacokinetics and dosimetry estimates in the development of preclinical radiopharmaceuticals. Terbium radionuclides have significant potential as matched theranostic pairs for multipurpose applications in nuclear medicine. In particular, 155Tb (t1/2 = 5.32 d) and 161Tb (t1/2 = 6.89 d) have been proposed as a theranostic pair for their respective applications in single photon emission computed tomography (SPECT) imaging and targeted beta therapy. Our study assessed the performance of preclinical quantitative SPECT imaging with 155Tb and 161Tb. A hot rod resolution phantom with rod diameters ranging between 0.85 and 1.70 mm was filled with either 155Tb (21.8 ± 1.7 MBq/mL) or 161Tb (23.6 ± 1.9 MBq/mL) and scanned with the VECTor preclinical SPECT/CT scanner. Image performance was evaluated with two collimators: a high energy ultra high resolution (HEUHR) collimator and an extra ultra high sensitivity (UHS) collimator. SPECT images were reconstructed from photopeaks at 43.0 keV, 86.6 keV, and 105.3 keV for 155Tb and 48.9 keV and 74.6 keV for 161Tb. Quantitative SPECT images of the resolution phantoms were analyzed to report inter-rod contrast, recovery coefficients, and contrast-to-noise metrics. Quantitative SPECT images of the resolution phantom established that the HEUHR collimator resolved all rods for 155Tb and 161Tb, and the UHS collimator resolved rods ≥ 1.10 mm for 161Tb and ≥ 1.30 mm for 155Tb. The HEUHR collimator maintained better quantitative accuracy than the UHS collimator with recovery coefficients up to 92%. Contrast-to-noise metrics were also superior with the HEUHR collimator. Both 155Tb and 161Tb demonstrated potential for applications in preclinical quantitative SPECT imaging. The high-resolution collimator achieves < 0.85 mm resolution and maintains quantitative accuracy in small volumes which is advantageous for assessing sub organ activity distributions in small animals. This imaging method can provide critical quantitative information for assessing and optimizing preclinical Tb-radiopharmaceuticals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
Phantom-based investigation of block sequential regularised expectation maximisation (BSREM) reconstruction for zirconium-89 PET-CT for varied count levels. Validation of a data-driven motion-compensated PET brain image reconstruction algorithm in clinical patients using four radiotracers. A review of state-of-the-art resolution improvement techniques in SPECT imaging. Count-rate management in 131I SPECT/CT calibration. Correction: Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1