Pranath Reddy, Michael W Toomey, Hanna Parul and Sergei Gleyzer
{"title":"DiffLense:引力透镜数据超分辨率的条件扩散模型","authors":"Pranath Reddy, Michael W Toomey, Hanna Parul and Sergei Gleyzer","doi":"10.1088/2632-2153/ad76f8","DOIUrl":null,"url":null,"abstract":"Gravitational lensing data is frequently collected at low resolution due to instrumental limitations and observing conditions. Machine learning-based super-resolution techniques offer a method to enhance the resolution of these images, enabling more precise measurements of lensing effects and a better understanding of the matter distribution in the lensing system. This enhancement can significantly improve our knowledge of the distribution of mass within the lensing galaxy and its environment, as well as the properties of the background source being lensed. Traditional super-resolution techniques typically learn a mapping function from lower-resolution to higher-resolution samples. However, these methods are often constrained by their dependence on optimizing a fixed distance function, which can result in the loss of intricate details crucial for astrophysical analysis. In this work, we introduce DiffLense, a novel super-resolution pipeline based on a conditional diffusion model specifically designed to enhance the resolution of gravitational lensing images obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Our approach adopts a generative model, leveraging the detailed structural information present in Hubble space telescope (HST) counterparts. The diffusion model, trained to generate HST data, is conditioned on HSC data pre-processed with denoising techniques and thresholding to significantly reduce noise and background interference. This process leads to a more distinct and less overlapping conditional distribution during the model’s training phase. We demonstrate that DiffLense outperforms existing state-of-the-art single-image super-resolution techniques, particularly in retaining the fine details necessary for astrophysical analyses.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"70 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data\",\"authors\":\"Pranath Reddy, Michael W Toomey, Hanna Parul and Sergei Gleyzer\",\"doi\":\"10.1088/2632-2153/ad76f8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational lensing data is frequently collected at low resolution due to instrumental limitations and observing conditions. Machine learning-based super-resolution techniques offer a method to enhance the resolution of these images, enabling more precise measurements of lensing effects and a better understanding of the matter distribution in the lensing system. This enhancement can significantly improve our knowledge of the distribution of mass within the lensing galaxy and its environment, as well as the properties of the background source being lensed. Traditional super-resolution techniques typically learn a mapping function from lower-resolution to higher-resolution samples. However, these methods are often constrained by their dependence on optimizing a fixed distance function, which can result in the loss of intricate details crucial for astrophysical analysis. In this work, we introduce DiffLense, a novel super-resolution pipeline based on a conditional diffusion model specifically designed to enhance the resolution of gravitational lensing images obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Our approach adopts a generative model, leveraging the detailed structural information present in Hubble space telescope (HST) counterparts. The diffusion model, trained to generate HST data, is conditioned on HSC data pre-processed with denoising techniques and thresholding to significantly reduce noise and background interference. This process leads to a more distinct and less overlapping conditional distribution during the model’s training phase. We demonstrate that DiffLense outperforms existing state-of-the-art single-image super-resolution techniques, particularly in retaining the fine details necessary for astrophysical analyses.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad76f8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad76f8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data
Gravitational lensing data is frequently collected at low resolution due to instrumental limitations and observing conditions. Machine learning-based super-resolution techniques offer a method to enhance the resolution of these images, enabling more precise measurements of lensing effects and a better understanding of the matter distribution in the lensing system. This enhancement can significantly improve our knowledge of the distribution of mass within the lensing galaxy and its environment, as well as the properties of the background source being lensed. Traditional super-resolution techniques typically learn a mapping function from lower-resolution to higher-resolution samples. However, these methods are often constrained by their dependence on optimizing a fixed distance function, which can result in the loss of intricate details crucial for astrophysical analysis. In this work, we introduce DiffLense, a novel super-resolution pipeline based on a conditional diffusion model specifically designed to enhance the resolution of gravitational lensing images obtained from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Our approach adopts a generative model, leveraging the detailed structural information present in Hubble space telescope (HST) counterparts. The diffusion model, trained to generate HST data, is conditioned on HSC data pre-processed with denoising techniques and thresholding to significantly reduce noise and background interference. This process leads to a more distinct and less overlapping conditional distribution during the model’s training phase. We demonstrate that DiffLense outperforms existing state-of-the-art single-image super-resolution techniques, particularly in retaining the fine details necessary for astrophysical analyses.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.