使用改进型 SAM-Med2D 进行医学图像分析:分割和分类视角

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-09-16 DOI:10.1186/s12880-024-01401-6
Jiakang Sun, Ke Chen, Zhiyi He, Siyuan Ren, Xinyang He, Xu Liu, Cheng Peng
{"title":"使用改进型 SAM-Med2D 进行医学图像分析:分割和分类视角","authors":"Jiakang Sun, Ke Chen, Zhiyi He, Siyuan Ren, Xinyang He, Xu Liu, Cheng Peng","doi":"10.1186/s12880-024-01401-6","DOIUrl":null,"url":null,"abstract":"Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal medical image segmentation. However, its reliance on interactive prompts may restrict its applicability under specific conditions. To address this limitation, we introduce SAM-AutoMed, which achieves automatic segmentation of medical images by replacing the original prompt encoder with an improved MobileNet v3 backbone. The performance on multiple datasets surpasses both SAM and SAM-Med2D. Current enhancements on the Large Visual Model SAM lack applications in the field of medical image classification. Therefore, we introduce SAM-MedCls, which combines the encoder of SAM-Med2D with our designed attention modules to construct an end-to-end medical image classification model. It performs well on datasets of various modalities, even achieving state-of-the-art results, indicating its potential to become a universal model for medical image classification.","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical image analysis using improved SAM-Med2D: segmentation and classification perspectives\",\"authors\":\"Jiakang Sun, Ke Chen, Zhiyi He, Siyuan Ren, Xinyang He, Xu Liu, Cheng Peng\",\"doi\":\"10.1186/s12880-024-01401-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal medical image segmentation. However, its reliance on interactive prompts may restrict its applicability under specific conditions. To address this limitation, we introduce SAM-AutoMed, which achieves automatic segmentation of medical images by replacing the original prompt encoder with an improved MobileNet v3 backbone. The performance on multiple datasets surpasses both SAM and SAM-Med2D. Current enhancements on the Large Visual Model SAM lack applications in the field of medical image classification. Therefore, we introduce SAM-MedCls, which combines the encoder of SAM-Med2D with our designed attention modules to construct an end-to-end medical image classification model. It performs well on datasets of various modalities, even achieving state-of-the-art results, indicating its potential to become a universal model for medical image classification.\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01401-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01401-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

最近出现的 SAM-Med2D 代表了医学图像分割领域的最新进展。通过在大量医疗数据集上对大型视觉模型--任意分割模型(SAM)进行微调,它在跨模态医疗图像分割方面取得了令人瞩目的成果。然而,它对交互式提示的依赖可能会限制其在特定条件下的适用性。为了解决这一局限性,我们引入了 SAM-AutoMed,它通过用改进的 MobileNet v3 骨干网取代原有的提示编码器来实现医学图像的自动分割。它在多个数据集上的性能超过了 SAM 和 SAM-Med2D。目前对大型视觉模型 SAM 的改进缺乏在医学图像分类领域的应用。因此,我们推出了 SAM-MedCls,它将 SAM-Med2D 的编码器与我们设计的注意力模块相结合,构建了端到端的医学图像分类模型。它在各种模式的数据集上表现良好,甚至达到了最先进的结果,这表明它有潜力成为医学图像分类的通用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medical image analysis using improved SAM-Med2D: segmentation and classification perspectives
Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved impressive results in cross-modal medical image segmentation. However, its reliance on interactive prompts may restrict its applicability under specific conditions. To address this limitation, we introduce SAM-AutoMed, which achieves automatic segmentation of medical images by replacing the original prompt encoder with an improved MobileNet v3 backbone. The performance on multiple datasets surpasses both SAM and SAM-Med2D. Current enhancements on the Large Visual Model SAM lack applications in the field of medical image classification. Therefore, we introduce SAM-MedCls, which combines the encoder of SAM-Med2D with our designed attention modules to construct an end-to-end medical image classification model. It performs well on datasets of various modalities, even achieving state-of-the-art results, indicating its potential to become a universal model for medical image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Mapping the distribution of radial artery atherosclerosis by optical coherence tomography. Development and validation of a CT-based radiomic nomogram for predicting surgical resection risk in patients with adhesive small bowel obstruction. Differentiation of multiple adrenal adenoma subtypes based on a radiomics and clinico-radiological model: a dual-center study. A Bayesian meta-analysis on MRI-based radiomics for predicting EGFR mutation in brain metastasis of lung cancer. Dual-phase contrast-enhanced CT-based intratumoral and peritumoral radiomics for preoperative prediction of lymphovascular invasion in gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1