Sweta H. Makwana, Tannavi Sharma, Manas K. Mahapatra, Monika Kumari, Akshat Jain, Sandeep K. Shrivastava, Chandi C. Mandal
{"title":"靶向 TRIM26:揭示肿瘤基因并确定植物代谢物作为乳腺癌的潜在疗法","authors":"Sweta H. Makwana, Tannavi Sharma, Manas K. Mahapatra, Monika Kumari, Akshat Jain, Sandeep K. Shrivastava, Chandi C. Mandal","doi":"10.1002/jcb.30644","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Breast cancer is the major cause of cancer-related mortality and frequent malignancies among women worldwide. The TRIM (Tripartite Motif) protein family is a broad and diverse set of proteins that contain a conserved structural motif known as the tripartite motif, which comprises of three different domains, B-box domain, Coiled-coil domain and RBR (Ring-finger, B-box, and coiled-coil) domain. TRIM proteins are involved in regulating cancer growth and metastasis. However, TRIM proteins are still unexplored in cancer cell regulation. In this study, by using a cancer database expression of all TRIM proteins was determined in breast cancer. Out of 77 TRIM genes, 16 genes were upregulated in breast cancer. Here, the upregulated TRIM26 gene's role is not yet explored in breast cancer. Indeed, TRIM26 is upregulated in 21 cancer types out of 33 cancer types. To investigate the role of TRIM26 in breast cancer, siRNA-mediated gene silencing was carried out in MCF-7 and MDA-MB 231 breast cancer cells. Reduced expression of TRIM 26 decreased cancer cell proliferation, migration and invasion with simultaneous reduction of various proliferative, cell cycle and mesenchymal markers and upregulation of epithelial markers. Further, docking studies found potential novel plant metabolites. Thus, targeting TRIM26 may provide a novel therapeutic approach for breast cancer treatment.</p></div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"125 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting TRIM26: Unveiling an Oncogene and Identification of Plant Metabolites as a Potential Therapeutics for Breast Cancer\",\"authors\":\"Sweta H. Makwana, Tannavi Sharma, Manas K. Mahapatra, Monika Kumari, Akshat Jain, Sandeep K. Shrivastava, Chandi C. Mandal\",\"doi\":\"10.1002/jcb.30644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Breast cancer is the major cause of cancer-related mortality and frequent malignancies among women worldwide. The TRIM (Tripartite Motif) protein family is a broad and diverse set of proteins that contain a conserved structural motif known as the tripartite motif, which comprises of three different domains, B-box domain, Coiled-coil domain and RBR (Ring-finger, B-box, and coiled-coil) domain. TRIM proteins are involved in regulating cancer growth and metastasis. However, TRIM proteins are still unexplored in cancer cell regulation. In this study, by using a cancer database expression of all TRIM proteins was determined in breast cancer. Out of 77 TRIM genes, 16 genes were upregulated in breast cancer. Here, the upregulated TRIM26 gene's role is not yet explored in breast cancer. Indeed, TRIM26 is upregulated in 21 cancer types out of 33 cancer types. To investigate the role of TRIM26 in breast cancer, siRNA-mediated gene silencing was carried out in MCF-7 and MDA-MB 231 breast cancer cells. Reduced expression of TRIM 26 decreased cancer cell proliferation, migration and invasion with simultaneous reduction of various proliferative, cell cycle and mesenchymal markers and upregulation of epithelial markers. Further, docking studies found potential novel plant metabolites. Thus, targeting TRIM26 may provide a novel therapeutic approach for breast cancer treatment.</p></div>\",\"PeriodicalId\":15219,\"journal\":{\"name\":\"Journal of cellular biochemistry\",\"volume\":\"125 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30644\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30644","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting TRIM26: Unveiling an Oncogene and Identification of Plant Metabolites as a Potential Therapeutics for Breast Cancer
Breast cancer is the major cause of cancer-related mortality and frequent malignancies among women worldwide. The TRIM (Tripartite Motif) protein family is a broad and diverse set of proteins that contain a conserved structural motif known as the tripartite motif, which comprises of three different domains, B-box domain, Coiled-coil domain and RBR (Ring-finger, B-box, and coiled-coil) domain. TRIM proteins are involved in regulating cancer growth and metastasis. However, TRIM proteins are still unexplored in cancer cell regulation. In this study, by using a cancer database expression of all TRIM proteins was determined in breast cancer. Out of 77 TRIM genes, 16 genes were upregulated in breast cancer. Here, the upregulated TRIM26 gene's role is not yet explored in breast cancer. Indeed, TRIM26 is upregulated in 21 cancer types out of 33 cancer types. To investigate the role of TRIM26 in breast cancer, siRNA-mediated gene silencing was carried out in MCF-7 and MDA-MB 231 breast cancer cells. Reduced expression of TRIM 26 decreased cancer cell proliferation, migration and invasion with simultaneous reduction of various proliferative, cell cycle and mesenchymal markers and upregulation of epithelial markers. Further, docking studies found potential novel plant metabolites. Thus, targeting TRIM26 may provide a novel therapeutic approach for breast cancer treatment.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.