LI2: 利用无人机及时监测兴趣点的基于学习的新方法

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-09-17 DOI:10.1109/TMC.2024.3461708
Ziyao Huang;Weiwei Wu;Kui Wu;Hang Yuan;Chenchen Fu;Feng Shan;Jianping Wang;Junzhou Luo
{"title":"LI2: 利用无人机及时监测兴趣点的基于学习的新方法","authors":"Ziyao Huang;Weiwei Wu;Kui Wu;Hang Yuan;Chenchen Fu;Feng Shan;Jianping Wang;Junzhou Luo","doi":"10.1109/TMC.2024.3461708","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) play a critical role in disaster response, swiftly gathering information from various points-of-interest (PoIs) across extensive areas. The freshness of this information is measured by the age of information (AoI), representing the time since the latest information acquisition of a specific PoI. However, devising AoI-minimizing routes for UAVs in obstructed post-disaster environments poses unique challenges that have yet to be fully overcome. Obstacles, like post-disaster barriers, can impede direct flight paths between PoIs, and limited battery life requires energy-conscious route planning. Additionally, existing solutions fail to universally minimize varying data freshness requirements. This research addresses the AoI-driven UAV travel problem, seeking to establish periodic routes that optimize AoI metrics while considering energy and general graph constraints. We develop a learning-based algorithm to enhance the current route iteratively, utilizing guidance from a deep reinforcement learning (DRL) agent and executing a series of operations to potentially decrease AoI while adhering to topological and energy constraints. The algorithm is validated on real post-disaster datasets, demonstrating significant improvements in various AoI metrics compared to other learning-based approaches. Furthermore, our algorithm outperforms approximation algorithms and can approach the global optimum when tailored to existing AoI-minimizing problems.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"45-61"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LI2: A New Learning-Based Approach to Timely Monitoring of Points-of-Interest With UAV\",\"authors\":\"Ziyao Huang;Weiwei Wu;Kui Wu;Hang Yuan;Chenchen Fu;Feng Shan;Jianping Wang;Junzhou Luo\",\"doi\":\"10.1109/TMC.2024.3461708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) play a critical role in disaster response, swiftly gathering information from various points-of-interest (PoIs) across extensive areas. The freshness of this information is measured by the age of information (AoI), representing the time since the latest information acquisition of a specific PoI. However, devising AoI-minimizing routes for UAVs in obstructed post-disaster environments poses unique challenges that have yet to be fully overcome. Obstacles, like post-disaster barriers, can impede direct flight paths between PoIs, and limited battery life requires energy-conscious route planning. Additionally, existing solutions fail to universally minimize varying data freshness requirements. This research addresses the AoI-driven UAV travel problem, seeking to establish periodic routes that optimize AoI metrics while considering energy and general graph constraints. We develop a learning-based algorithm to enhance the current route iteratively, utilizing guidance from a deep reinforcement learning (DRL) agent and executing a series of operations to potentially decrease AoI while adhering to topological and energy constraints. The algorithm is validated on real post-disaster datasets, demonstrating significant improvements in various AoI metrics compared to other learning-based approaches. Furthermore, our algorithm outperforms approximation algorithms and can approach the global optimum when tailored to existing AoI-minimizing problems.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 1\",\"pages\":\"45-61\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681294/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681294/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(uav)在灾难响应中发挥着至关重要的作用,可以从广泛地区的各个兴趣点(poi)快速收集信息。该信息的新鲜度是通过信息年龄(AoI)来度量的,AoI表示自获取特定PoI的最新信息以来的时间。然而,为无人机在受阻的灾后环境中设计最小化aoi的路线提出了尚未完全克服的独特挑战。障碍物,比如灾后屏障,可能会阻碍飞机在不同地点之间的直接飞行路径,而且有限的电池寿命需要有节能意识的路线规划。此外,现有的解决方案无法普遍地最小化不同的数据新鲜度需求。本研究解决了AoI驱动的无人机飞行问题,在考虑能量和一般图约束的情况下,寻求建立优化AoI指标的周期性路线。我们开发了一种基于学习的算法来迭代增强当前路径,利用深度强化学习(DRL)代理的指导,并执行一系列操作来潜在地降低AoI,同时遵守拓扑和能量约束。该算法在真实的灾后数据集上进行了验证,与其他基于学习的方法相比,该算法在各种AoI指标上有了显着改善。此外,我们的算法优于近似算法,当针对现有的aoi最小化问题进行定制时,可以接近全局最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LI2: A New Learning-Based Approach to Timely Monitoring of Points-of-Interest With UAV
Unmanned aerial vehicles (UAVs) play a critical role in disaster response, swiftly gathering information from various points-of-interest (PoIs) across extensive areas. The freshness of this information is measured by the age of information (AoI), representing the time since the latest information acquisition of a specific PoI. However, devising AoI-minimizing routes for UAVs in obstructed post-disaster environments poses unique challenges that have yet to be fully overcome. Obstacles, like post-disaster barriers, can impede direct flight paths between PoIs, and limited battery life requires energy-conscious route planning. Additionally, existing solutions fail to universally minimize varying data freshness requirements. This research addresses the AoI-driven UAV travel problem, seeking to establish periodic routes that optimize AoI metrics while considering energy and general graph constraints. We develop a learning-based algorithm to enhance the current route iteratively, utilizing guidance from a deep reinforcement learning (DRL) agent and executing a series of operations to potentially decrease AoI while adhering to topological and energy constraints. The algorithm is validated on real post-disaster datasets, demonstrating significant improvements in various AoI metrics compared to other learning-based approaches. Furthermore, our algorithm outperforms approximation algorithms and can approach the global optimum when tailored to existing AoI-minimizing problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1