Xiaotong Zhang;Qingqiao Hu;Zhen Xiao;Tao Sun;Jiaxi Zhang;Jin Zhang;Zhenjiang Li
{"title":"基于无线的人类活动识别无需微调,只需少量镜头即可适应未知条件","authors":"Xiaotong Zhang;Qingqiao Hu;Zhen Xiao;Tao Sun;Jiaxi Zhang;Jin Zhang;Zhenjiang Li","doi":"10.1109/TMC.2024.3462466","DOIUrl":null,"url":null,"abstract":"Wireless-based human activity recognition (WHAR) enables various promising applications. However, since WHAR is sensitive to changes in sensing conditions (e.g., different environments, users, and new activities), trained models often do not work well under new conditions. Recent research uses meta-learning to adapt models. However, they must fine-tune the model, which greatly hinders the widespread adoption of WHAR in practice because model fine-tuning is difficult to automate and requires deep-learning expertise. The fundamental reason for model fine-tuning in existing works is because their goal is to find the mapping relationship between data samples and corresponding activity labels. Since this mapping reflects the intrinsic properties of data in the perceptual scene, it is naturally related to the conditions under which the activity is sensed. To address this problem, we exploit the principle that under the same sensing condition, data of the same activity class are more similar (in a certain latent space) than data of other classes, and this property holds invariant across different conditions. Our main observation is that meta-learning can actually also transform WHAR design into a learning problem that is always under similar conditions, thus decoupling the dependence on sensing conditions. With this capability, general and accurate WHAR can be achieved, avoiding model fine-tuning. In this paper, we implement this idea through two innovative designs in a system called RoMF. Extensive experiments using FMCW, Wi-Fi and acoustic three sensing signals show that it can achieve up to 95.3% accuracy in unseen conditions, including new environments, users and activity classes.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"585-599"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Adaptation to Unseen Conditions for Wireless-Based Human Activity Recognition Without Fine-Tuning\",\"authors\":\"Xiaotong Zhang;Qingqiao Hu;Zhen Xiao;Tao Sun;Jiaxi Zhang;Jin Zhang;Zhenjiang Li\",\"doi\":\"10.1109/TMC.2024.3462466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless-based human activity recognition (WHAR) enables various promising applications. However, since WHAR is sensitive to changes in sensing conditions (e.g., different environments, users, and new activities), trained models often do not work well under new conditions. Recent research uses meta-learning to adapt models. However, they must fine-tune the model, which greatly hinders the widespread adoption of WHAR in practice because model fine-tuning is difficult to automate and requires deep-learning expertise. The fundamental reason for model fine-tuning in existing works is because their goal is to find the mapping relationship between data samples and corresponding activity labels. Since this mapping reflects the intrinsic properties of data in the perceptual scene, it is naturally related to the conditions under which the activity is sensed. To address this problem, we exploit the principle that under the same sensing condition, data of the same activity class are more similar (in a certain latent space) than data of other classes, and this property holds invariant across different conditions. Our main observation is that meta-learning can actually also transform WHAR design into a learning problem that is always under similar conditions, thus decoupling the dependence on sensing conditions. With this capability, general and accurate WHAR can be achieved, avoiding model fine-tuning. In this paper, we implement this idea through two innovative designs in a system called RoMF. Extensive experiments using FMCW, Wi-Fi and acoustic three sensing signals show that it can achieve up to 95.3% accuracy in unseen conditions, including new environments, users and activity classes.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 2\",\"pages\":\"585-599\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681641/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681641/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Few-Shot Adaptation to Unseen Conditions for Wireless-Based Human Activity Recognition Without Fine-Tuning
Wireless-based human activity recognition (WHAR) enables various promising applications. However, since WHAR is sensitive to changes in sensing conditions (e.g., different environments, users, and new activities), trained models often do not work well under new conditions. Recent research uses meta-learning to adapt models. However, they must fine-tune the model, which greatly hinders the widespread adoption of WHAR in practice because model fine-tuning is difficult to automate and requires deep-learning expertise. The fundamental reason for model fine-tuning in existing works is because their goal is to find the mapping relationship between data samples and corresponding activity labels. Since this mapping reflects the intrinsic properties of data in the perceptual scene, it is naturally related to the conditions under which the activity is sensed. To address this problem, we exploit the principle that under the same sensing condition, data of the same activity class are more similar (in a certain latent space) than data of other classes, and this property holds invariant across different conditions. Our main observation is that meta-learning can actually also transform WHAR design into a learning problem that is always under similar conditions, thus decoupling the dependence on sensing conditions. With this capability, general and accurate WHAR can be achieved, avoiding model fine-tuning. In this paper, we implement this idea through two innovative designs in a system called RoMF. Extensive experiments using FMCW, Wi-Fi and acoustic three sensing signals show that it can achieve up to 95.3% accuracy in unseen conditions, including new environments, users and activity classes.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.