卷积层谱规范的严密而高效的上界

Ekaterina Grishina, Mikhail Gorbunov, Maxim Rakhuba
{"title":"卷积层谱规范的严密而高效的上界","authors":"Ekaterina Grishina, Mikhail Gorbunov, Maxim Rakhuba","doi":"arxiv-2409.11859","DOIUrl":null,"url":null,"abstract":"Controlling the spectral norm of the Jacobian matrix, which is related to the\nconvolution operation, has been shown to improve generalization, training\nstability and robustness in CNNs. Existing methods for computing the norm\neither tend to overestimate it or their performance may deteriorate quickly\nwith increasing the input and kernel sizes. In this paper, we demonstrate that\nthe tensor version of the spectral norm of a four-dimensional convolution\nkernel, up to a constant factor, serves as an upper bound for the spectral norm\nof the Jacobian matrix associated with the convolution operation. This new\nupper bound is independent of the input image resolution, differentiable and\ncan be efficiently calculated during training. Through experiments, we\ndemonstrate how this new bound can be used to improve the performance of\nconvolutional architectures.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight and Efficient Upper Bound on Spectral Norm of Convolutional Layers\",\"authors\":\"Ekaterina Grishina, Mikhail Gorbunov, Maxim Rakhuba\",\"doi\":\"arxiv-2409.11859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the spectral norm of the Jacobian matrix, which is related to the\\nconvolution operation, has been shown to improve generalization, training\\nstability and robustness in CNNs. Existing methods for computing the norm\\neither tend to overestimate it or their performance may deteriorate quickly\\nwith increasing the input and kernel sizes. In this paper, we demonstrate that\\nthe tensor version of the spectral norm of a four-dimensional convolution\\nkernel, up to a constant factor, serves as an upper bound for the spectral norm\\nof the Jacobian matrix associated with the convolution operation. This new\\nupper bound is independent of the input image resolution, differentiable and\\ncan be efficiently calculated during training. Through experiments, we\\ndemonstrate how this new bound can be used to improve the performance of\\nconvolutional architectures.\",\"PeriodicalId\":501301,\"journal\":{\"name\":\"arXiv - CS - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

控制与卷积操作相关的雅各布矩阵的谱规范已被证明可以提高 CNN 的泛化、训练稳定性和鲁棒性。现有的雅各布矩阵计算方法往往会高估该值,或者随着输入和核大小的增加,其性能会迅速下降。在本文中,我们证明了四维卷积核的张量版谱规范(直到一个常数因子)可作为与卷积操作相关的雅各布矩阵的谱规范的上界。这个新的上界与输入图像的分辨率无关,可微分,并能在训练过程中有效计算。通过实验,我们展示了如何利用这一新上界来提高卷积架构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tight and Efficient Upper Bound on Spectral Norm of Convolutional Layers
Controlling the spectral norm of the Jacobian matrix, which is related to the convolution operation, has been shown to improve generalization, training stability and robustness in CNNs. Existing methods for computing the norm either tend to overestimate it or their performance may deteriorate quickly with increasing the input and kernel sizes. In this paper, we demonstrate that the tensor version of the spectral norm of a four-dimensional convolution kernel, up to a constant factor, serves as an upper bound for the spectral norm of the Jacobian matrix associated with the convolution operation. This new upper bound is independent of the input image resolution, differentiable and can be efficiently calculated during training. Through experiments, we demonstrate how this new bound can be used to improve the performance of convolutional architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1