Qi-Wen Wang , Zhang-Ao Shi , Lin Guo , Wei-Hao Cai , Jia-Min Wu , Chong Tian , Xin Lin , Hai-Sheng Xu , Fen Wang , Yu-Sheng Shi
{"title":"Al2O3 涂层对罐槽光聚合制备的 Si3N4 陶瓷性能的影响","authors":"Qi-Wen Wang , Zhang-Ao Shi , Lin Guo , Wei-Hao Cai , Jia-Min Wu , Chong Tian , Xin Lin , Hai-Sheng Xu , Fen Wang , Yu-Sheng Shi","doi":"10.1016/j.ceramint.2024.09.245","DOIUrl":null,"url":null,"abstract":"<div><div>The preparation of Si<sub>3</sub>N<sub>4</sub> ceramics by vat photopolymerization (VPP) has motivated increasing research interest. However, it is challenging to prepare Si<sub>3</sub>N<sub>4</sub> ceramics by VPP due to the high UV-light absorbance and refractive index of powder. In this paper, a method for Al<sub>2</sub>O<sub>3</sub>-coated Si<sub>3</sub>N<sub>4</sub> powder was proposed. Combined with the boehmite-coated and high-temperature treatment, Al<sub>2</sub>O<sub>3</sub> was successfully coated on the surface of Si<sub>3</sub>N<sub>4</sub> powder. The effect of Al<sub>2</sub>O<sub>3</sub> content on the properties of Si<sub>3</sub>N<sub>4</sub> powders, slurry and the sintered Si<sub>3</sub>N<sub>4</sub> samples were investigated. The Al<sub>2</sub>O<sub>3</sub> coating layer not only improves the curing forming ability of Si<sub>3</sub>N<sub>4</sub> slurries, but also can directly act as one of the sintering aids of Si<sub>3</sub>N<sub>4</sub> ceramics. The bulk density of the samples decreases from 3.04 ± 0.02 g/cm<sup>3</sup> to 2.97 ± 0.01 g/cm<sup>3</sup> with the increase of coating content, while the porosity increases from 5.38 ± 0.89 % to 7.54 ± 0.63 %. The sample of 5 wt % Al<sub>2</sub>O<sub>3</sub> coating content has the maximum flexural strength of 474.28 ± 16.38 MPa and the highest relative density of 94.62 ± 0.89 %. This work can not only obtain a great modification effect, but also promote the dense sintering of Si<sub>3</sub>N<sub>4</sub> ceramics during subsequent stages, which provides a constructive method for modifying Si<sub>3</sub>N<sub>4</sub> powders to achieve photopolymerization.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 49041-49050"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Al2O3 coating on the properties of Si3N4 ceramics prepared by vat photopolymerization\",\"authors\":\"Qi-Wen Wang , Zhang-Ao Shi , Lin Guo , Wei-Hao Cai , Jia-Min Wu , Chong Tian , Xin Lin , Hai-Sheng Xu , Fen Wang , Yu-Sheng Shi\",\"doi\":\"10.1016/j.ceramint.2024.09.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The preparation of Si<sub>3</sub>N<sub>4</sub> ceramics by vat photopolymerization (VPP) has motivated increasing research interest. However, it is challenging to prepare Si<sub>3</sub>N<sub>4</sub> ceramics by VPP due to the high UV-light absorbance and refractive index of powder. In this paper, a method for Al<sub>2</sub>O<sub>3</sub>-coated Si<sub>3</sub>N<sub>4</sub> powder was proposed. Combined with the boehmite-coated and high-temperature treatment, Al<sub>2</sub>O<sub>3</sub> was successfully coated on the surface of Si<sub>3</sub>N<sub>4</sub> powder. The effect of Al<sub>2</sub>O<sub>3</sub> content on the properties of Si<sub>3</sub>N<sub>4</sub> powders, slurry and the sintered Si<sub>3</sub>N<sub>4</sub> samples were investigated. The Al<sub>2</sub>O<sub>3</sub> coating layer not only improves the curing forming ability of Si<sub>3</sub>N<sub>4</sub> slurries, but also can directly act as one of the sintering aids of Si<sub>3</sub>N<sub>4</sub> ceramics. The bulk density of the samples decreases from 3.04 ± 0.02 g/cm<sup>3</sup> to 2.97 ± 0.01 g/cm<sup>3</sup> with the increase of coating content, while the porosity increases from 5.38 ± 0.89 % to 7.54 ± 0.63 %. The sample of 5 wt % Al<sub>2</sub>O<sub>3</sub> coating content has the maximum flexural strength of 474.28 ± 16.38 MPa and the highest relative density of 94.62 ± 0.89 %. This work can not only obtain a great modification effect, but also promote the dense sintering of Si<sub>3</sub>N<sub>4</sub> ceramics during subsequent stages, which provides a constructive method for modifying Si<sub>3</sub>N<sub>4</sub> powders to achieve photopolymerization.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 49041-49050\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224042524\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224042524","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of Al2O3 coating on the properties of Si3N4 ceramics prepared by vat photopolymerization
The preparation of Si3N4 ceramics by vat photopolymerization (VPP) has motivated increasing research interest. However, it is challenging to prepare Si3N4 ceramics by VPP due to the high UV-light absorbance and refractive index of powder. In this paper, a method for Al2O3-coated Si3N4 powder was proposed. Combined with the boehmite-coated and high-temperature treatment, Al2O3 was successfully coated on the surface of Si3N4 powder. The effect of Al2O3 content on the properties of Si3N4 powders, slurry and the sintered Si3N4 samples were investigated. The Al2O3 coating layer not only improves the curing forming ability of Si3N4 slurries, but also can directly act as one of the sintering aids of Si3N4 ceramics. The bulk density of the samples decreases from 3.04 ± 0.02 g/cm3 to 2.97 ± 0.01 g/cm3 with the increase of coating content, while the porosity increases from 5.38 ± 0.89 % to 7.54 ± 0.63 %. The sample of 5 wt % Al2O3 coating content has the maximum flexural strength of 474.28 ± 16.38 MPa and the highest relative density of 94.62 ± 0.89 %. This work can not only obtain a great modification effect, but also promote the dense sintering of Si3N4 ceramics during subsequent stages, which provides a constructive method for modifying Si3N4 powders to achieve photopolymerization.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.