用于电介质储能的纳米级涂层聚合物电容器薄膜:综述

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Coatings Pub Date : 2024-09-15 DOI:10.3390/coatings14091193
Liang Cao, Rui Xi, Chen Zhou, Gaohui He, Feng Yang, Lingna Xu, He Li
{"title":"用于电介质储能的纳米级涂层聚合物电容器薄膜:综述","authors":"Liang Cao, Rui Xi, Chen Zhou, Gaohui He, Feng Yang, Lingna Xu, He Li","doi":"10.3390/coatings14091193","DOIUrl":null,"url":null,"abstract":"Enhancing the energy storage properties of dielectric polymer capacitor films through composite materials has gained widespread recognition. Among the various strategies for improving dielectric materials, nanoscale coatings that create structurally controlled multiphase polymeric films have shown great promise. This approach has garnered considerable attention in recent years due to its effectiveness. This review examines surface-coated polymer composites used for dielectric energy storage, discussing their dielectric properties, behaviors, and the underlying physical mechanisms involved in energy storage. The review thoroughly examines the fabrication methods for nanoscale coatings and the selection of coating materials. It also explores the latest advancements in the rational design and control of interfaces in organic–inorganic, organic–organic, and heterogeneous multiphase structures. Additionally, the review delves into the structure–property relationships between different interfacial phases and various interface structures, analyzing how nanoscale coatings the impact dielectric constant, breakdown strength, conduction and charge transport mechanisms, energy density and efficiency, thermal stability, and electrothermal durability of polymeric capacitor films. Moreover, the review summarizes relevant simulation methods and offers computational insights. The potential practical applications and characteristics of such nanoscale coating techniques are discussed, along with the existing challenges and practical limitations. Finally, the review concludes with a summary and outlook, highlighting potential research directions in this rapidly evolving field.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"54 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer Capacitor Films with Nanoscale Coatings for Dielectric Energy Storage: A Review\",\"authors\":\"Liang Cao, Rui Xi, Chen Zhou, Gaohui He, Feng Yang, Lingna Xu, He Li\",\"doi\":\"10.3390/coatings14091193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the energy storage properties of dielectric polymer capacitor films through composite materials has gained widespread recognition. Among the various strategies for improving dielectric materials, nanoscale coatings that create structurally controlled multiphase polymeric films have shown great promise. This approach has garnered considerable attention in recent years due to its effectiveness. This review examines surface-coated polymer composites used for dielectric energy storage, discussing their dielectric properties, behaviors, and the underlying physical mechanisms involved in energy storage. The review thoroughly examines the fabrication methods for nanoscale coatings and the selection of coating materials. It also explores the latest advancements in the rational design and control of interfaces in organic–inorganic, organic–organic, and heterogeneous multiphase structures. Additionally, the review delves into the structure–property relationships between different interfacial phases and various interface structures, analyzing how nanoscale coatings the impact dielectric constant, breakdown strength, conduction and charge transport mechanisms, energy density and efficiency, thermal stability, and electrothermal durability of polymeric capacitor films. Moreover, the review summarizes relevant simulation methods and offers computational insights. The potential practical applications and characteristics of such nanoscale coating techniques are discussed, along with the existing challenges and practical limitations. Finally, the review concludes with a summary and outlook, highlighting potential research directions in this rapidly evolving field.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091193\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091193","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

通过复合材料提高电介质聚合物电容器薄膜的储能特性已得到广泛认可。在改进介电材料的各种策略中,纳米级涂层可形成结构可控的多相聚合物薄膜,前景广阔。近年来,这种方法因其有效性而备受关注。本综述探讨了用于电介质储能的表面涂层聚合物复合材料,讨论了它们的介电性能、行为以及储能所涉及的基本物理机制。综述深入探讨了纳米涂层的制造方法和涂层材料的选择。它还探讨了有机-无机、有机-有机和异质多相结构中界面的合理设计和控制方面的最新进展。此外,综述还深入探讨了不同界面相和各种界面结构之间的结构-性能关系,分析了纳米级涂层如何影响聚合物电容器薄膜的介电常数、击穿强度、传导和电荷传输机制、能量密度和效率、热稳定性和电热耐久性。此外,该综述还总结了相关的模拟方法,并提供了计算方面的见解。此外,还讨论了此类纳米涂层技术的潜在实际应用和特点,以及现有的挑战和实际限制。最后,综述以总结和展望结束,强调了这一快速发展领域的潜在研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer Capacitor Films with Nanoscale Coatings for Dielectric Energy Storage: A Review
Enhancing the energy storage properties of dielectric polymer capacitor films through composite materials has gained widespread recognition. Among the various strategies for improving dielectric materials, nanoscale coatings that create structurally controlled multiphase polymeric films have shown great promise. This approach has garnered considerable attention in recent years due to its effectiveness. This review examines surface-coated polymer composites used for dielectric energy storage, discussing their dielectric properties, behaviors, and the underlying physical mechanisms involved in energy storage. The review thoroughly examines the fabrication methods for nanoscale coatings and the selection of coating materials. It also explores the latest advancements in the rational design and control of interfaces in organic–inorganic, organic–organic, and heterogeneous multiphase structures. Additionally, the review delves into the structure–property relationships between different interfacial phases and various interface structures, analyzing how nanoscale coatings the impact dielectric constant, breakdown strength, conduction and charge transport mechanisms, energy density and efficiency, thermal stability, and electrothermal durability of polymeric capacitor films. Moreover, the review summarizes relevant simulation methods and offers computational insights. The potential practical applications and characteristics of such nanoscale coating techniques are discussed, along with the existing challenges and practical limitations. Finally, the review concludes with a summary and outlook, highlighting potential research directions in this rapidly evolving field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
期刊最新文献
The Construction of a Small-Caliber Barrel Wear Model and a Study of the Barrel Wear Rule Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite Shelf-Life Extension and Quality Changes of Fresh-Cut Apple via Sago and Soy-Oil-Based Edible Coatings Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1