Beata Kucharska, Kamil Bochra, Tadeusz Wierzchoń, Jerzy Robert Sobiecki
{"title":"用于太空应用的保护性磁控溅射物理气相沉积涂层","authors":"Beata Kucharska, Kamil Bochra, Tadeusz Wierzchoń, Jerzy Robert Sobiecki","doi":"10.3390/coatings14091195","DOIUrl":null,"url":null,"abstract":"In this study, the use of Cr/CrN+CrCN/Cr-C:H, Cr/W-C:H, and Cr/CrN+Ag/Cr-C:H coatings deposited on copper beryllium were investigated. These protective coatings were prepared using the Magnetron Sputtering Physical Vapor Deposition (MSPVD) method. The tests were carried out in order to qualify the outer DLC (Diamond-Like Carbon) layers for use as the protective function and for regulating the thermo-optical properties. The objective of this study was to compare the properties of chromium and chromium nitride-based coatings. The microstructure, architecture, and chemical composition were studied using scanning electron microscopy (SEM), Photo Diode BackScattered Electrons (PDBS), and X-ray dispersion spectroscopy (EDX). The adhesion was evaluated using a scratch test and a peel and pull-off method. The level of protection against the cold welding effect was tested. Thermo-optical, microhardness, and surface electric resistivity tests were performed. It was found that in cases where increased resistance to cold welding is required, DLC2 and DLC3 proved to be the best solutions. An example of such an application is tubular boom antennas, which are stored in a rolled-up form until deployed in space. They are susceptible to cold welding due to vibration during rocket launch and subsequent exposure to high vacuum.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Magnetron Sputtering Physical Vapor Deposition Coatings for Space Application\",\"authors\":\"Beata Kucharska, Kamil Bochra, Tadeusz Wierzchoń, Jerzy Robert Sobiecki\",\"doi\":\"10.3390/coatings14091195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the use of Cr/CrN+CrCN/Cr-C:H, Cr/W-C:H, and Cr/CrN+Ag/Cr-C:H coatings deposited on copper beryllium were investigated. These protective coatings were prepared using the Magnetron Sputtering Physical Vapor Deposition (MSPVD) method. The tests were carried out in order to qualify the outer DLC (Diamond-Like Carbon) layers for use as the protective function and for regulating the thermo-optical properties. The objective of this study was to compare the properties of chromium and chromium nitride-based coatings. The microstructure, architecture, and chemical composition were studied using scanning electron microscopy (SEM), Photo Diode BackScattered Electrons (PDBS), and X-ray dispersion spectroscopy (EDX). The adhesion was evaluated using a scratch test and a peel and pull-off method. The level of protection against the cold welding effect was tested. Thermo-optical, microhardness, and surface electric resistivity tests were performed. It was found that in cases where increased resistance to cold welding is required, DLC2 and DLC3 proved to be the best solutions. An example of such an application is tubular boom antennas, which are stored in a rolled-up form until deployed in space. They are susceptible to cold welding due to vibration during rocket launch and subsequent exposure to high vacuum.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091195\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091195","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Protective Magnetron Sputtering Physical Vapor Deposition Coatings for Space Application
In this study, the use of Cr/CrN+CrCN/Cr-C:H, Cr/W-C:H, and Cr/CrN+Ag/Cr-C:H coatings deposited on copper beryllium were investigated. These protective coatings were prepared using the Magnetron Sputtering Physical Vapor Deposition (MSPVD) method. The tests were carried out in order to qualify the outer DLC (Diamond-Like Carbon) layers for use as the protective function and for regulating the thermo-optical properties. The objective of this study was to compare the properties of chromium and chromium nitride-based coatings. The microstructure, architecture, and chemical composition were studied using scanning electron microscopy (SEM), Photo Diode BackScattered Electrons (PDBS), and X-ray dispersion spectroscopy (EDX). The adhesion was evaluated using a scratch test and a peel and pull-off method. The level of protection against the cold welding effect was tested. Thermo-optical, microhardness, and surface electric resistivity tests were performed. It was found that in cases where increased resistance to cold welding is required, DLC2 and DLC3 proved to be the best solutions. An example of such an application is tubular boom antennas, which are stored in a rolled-up form until deployed in space. They are susceptible to cold welding due to vibration during rocket launch and subsequent exposure to high vacuum.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material