K Palaksha Reddy, T.K. Kandavel, V.M. Sreehari
{"title":"Influence of carbon percentage on the wear and friction characteristics of ATOMET 4601 alloys in heavy-duty machinery","authors":"K Palaksha Reddy, T.K. Kandavel, V.M. Sreehari","doi":"10.1177/09544089241283285","DOIUrl":null,"url":null,"abstract":"Heavy-duty machinery demands materials with strong wear resistance and good frictional properties, which conventional materials often lack. The knowledge of PM alloys’ friction and wear characteristics versus standard steel materials is limited. ATOMET 4601, a high-strength prealloyed powder with excellent compressibility, allows for parts with densities over 6.8 g/cm³. Carbon (0, 0.5, 1.0 wt.%) was added to enhance performance. These alloys, compacted to 75% of theoretical density and sintered at 1100 ± 10°C, were tested for wear and friction against EN31 steel. Results showed carbon improved tribological performance, with ATOMET 4601 + 1.0%C exhibiting the best wear resistance. Regression models and interaction plots indicated significant effects of load and speed on wear rate and coefficient of friction. Microstructural analysis revealed carbides and oxides in the ferrite matrix, with adhesive, abrasive, and oxidative wear as primary mechanisms.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241283285","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

重型机械要求材料具有很强的耐磨性和良好的摩擦性能,而传统材料往往缺乏这些性能。人们对 PM 合金与标准钢材的摩擦和磨损特性了解有限。ATOMET 4601 是一种高强度预合金粉末,具有极佳的可压缩性,可制成密度超过 6.8 g/cm³ 的零件。为了提高性能,还添加了碳(0、0.5、1.0 wt.%)。这些合金被压制到理论密度的 75%,并在 1100 ± 10°C 的温度下烧结,与 EN31 钢进行了磨损和摩擦测试。结果表明,碳提高了摩擦学性能,其中 ATOMET 4601 + 1.0%C 的耐磨性最好。回归模型和交互图表明,载荷和速度对磨损率和摩擦系数有显著影响。微观结构分析表明,铁素体基体中存在碳化物和氧化物,粘着磨损、磨料磨损和氧化磨损是主要的磨损机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of carbon percentage on the wear and friction characteristics of ATOMET 4601 alloys in heavy-duty machinery
Heavy-duty machinery demands materials with strong wear resistance and good frictional properties, which conventional materials often lack. The knowledge of PM alloys’ friction and wear characteristics versus standard steel materials is limited. ATOMET 4601, a high-strength prealloyed powder with excellent compressibility, allows for parts with densities over 6.8 g/cm³. Carbon (0, 0.5, 1.0 wt.%) was added to enhance performance. These alloys, compacted to 75% of theoretical density and sintered at 1100 ± 10°C, were tested for wear and friction against EN31 steel. Results showed carbon improved tribological performance, with ATOMET 4601 + 1.0%C exhibiting the best wear resistance. Regression models and interaction plots indicated significant effects of load and speed on wear rate and coefficient of friction. Microstructural analysis revealed carbides and oxides in the ferrite matrix, with adhesive, abrasive, and oxidative wear as primary mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
16.70%
发文量
370
审稿时长
6 months
期刊介绍: The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.
期刊最新文献
Tailoring mechanical, microstructural and toughening characteristics of plasma-sprayed graphene-reinforced samarium niobate coatings for extreme environments Influence of carbon percentage on the wear and friction characteristics of ATOMET 4601 alloys in heavy-duty machinery Tribological behavior of Ni-based composite coatings produced by cold spray Multi-objective optimization of 3D printing parameters to fabricate TPU for tribological applications Multi-fidelity multidisciplinary meta-model based optimization of a slender body with fins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1