利用船舶与冰相互作用的学习预测在冰封水域自主导航

Ninghan Zhong, Alessandro Potenza, Stephen L. Smith
{"title":"利用船舶与冰相互作用的学习预测在冰封水域自主导航","authors":"Ninghan Zhong, Alessandro Potenza, Stephen L. Smith","doi":"arxiv-2409.11326","DOIUrl":null,"url":null,"abstract":"Autonomous navigation in ice-covered waters poses significant challenges due\nto the frequent lack of viable collision-free trajectories. When complete\nobstacle avoidance is infeasible, it becomes imperative for the navigation\nstrategy to minimize collisions. Additionally, the dynamic nature of ice, which\nmoves in response to ship maneuvers, complicates the path planning process. To\naddress these challenges, we propose a novel deep learning model to estimate\nthe coarse dynamics of ice movements triggered by ship actions through\noccupancy estimation. To ensure real-time applicability, we propose a novel\napproach that caches intermediate prediction results and seamlessly integrates\nthe predictive model into a graph search planner. We evaluate the proposed\nplanner both in simulation and in a physical testbed against existing\napproaches and show that our planner significantly reduces collisions with ice\nwhen compared to the state-of-the-art. Codes and demos of this work are\navailable at https://github.com/IvanIZ/predictive-asv-planner.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Navigation in Ice-Covered Waters with Learned Predictions on Ship-Ice Interactions\",\"authors\":\"Ninghan Zhong, Alessandro Potenza, Stephen L. Smith\",\"doi\":\"arxiv-2409.11326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous navigation in ice-covered waters poses significant challenges due\\nto the frequent lack of viable collision-free trajectories. When complete\\nobstacle avoidance is infeasible, it becomes imperative for the navigation\\nstrategy to minimize collisions. Additionally, the dynamic nature of ice, which\\nmoves in response to ship maneuvers, complicates the path planning process. To\\naddress these challenges, we propose a novel deep learning model to estimate\\nthe coarse dynamics of ice movements triggered by ship actions through\\noccupancy estimation. To ensure real-time applicability, we propose a novel\\napproach that caches intermediate prediction results and seamlessly integrates\\nthe predictive model into a graph search planner. We evaluate the proposed\\nplanner both in simulation and in a physical testbed against existing\\napproaches and show that our planner significantly reduces collisions with ice\\nwhen compared to the state-of-the-art. Codes and demos of this work are\\navailable at https://github.com/IvanIZ/predictive-asv-planner.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于经常缺乏可行的无碰撞轨迹,在冰封水域进行自主导航面临着巨大挑战。当完全避开障碍物不可行时,导航策略就必须尽量减少碰撞。此外,冰的动态性质会随着船只的机动而移动,这也使路径规划过程变得更加复杂。为了应对这些挑战,我们提出了一种新颖的深度学习模型,通过占位估计来估计船舶行动引发的冰运动的粗动态。为确保实时适用性,我们提出了一种新方法,即缓存中间预测结果,并将预测模型无缝集成到图搜索规划器中。我们在仿真和物理测试平台上评估了所提出的计划器与现有计划器的比较,结果表明,与最先进的计划器相比,我们的计划器大大减少了与冰的碰撞。这项工作的代码和演示可在 https://github.com/IvanIZ/predictive-asv-planner 上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous Navigation in Ice-Covered Waters with Learned Predictions on Ship-Ice Interactions
Autonomous navigation in ice-covered waters poses significant challenges due to the frequent lack of viable collision-free trajectories. When complete obstacle avoidance is infeasible, it becomes imperative for the navigation strategy to minimize collisions. Additionally, the dynamic nature of ice, which moves in response to ship maneuvers, complicates the path planning process. To address these challenges, we propose a novel deep learning model to estimate the coarse dynamics of ice movements triggered by ship actions through occupancy estimation. To ensure real-time applicability, we propose a novel approach that caches intermediate prediction results and seamlessly integrates the predictive model into a graph search planner. We evaluate the proposed planner both in simulation and in a physical testbed against existing approaches and show that our planner significantly reduces collisions with ice when compared to the state-of-the-art. Codes and demos of this work are available at https://github.com/IvanIZ/predictive-asv-planner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1