Argus:实现跨摄像机协作,在分布式智能摄像机上进行视频分析

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-09-18 DOI:10.1109/TMC.2024.3459409
Juheon Yi;Utku Günay Acer;Fahim Kawsar;Chulhong Min
{"title":"Argus:实现跨摄像机协作,在分布式智能摄像机上进行视频分析","authors":"Juheon Yi;Utku Günay Acer;Fahim Kawsar;Chulhong Min","doi":"10.1109/TMC.2024.3459409","DOIUrl":null,"url":null,"abstract":"Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced, comprehensive and robust analysis. However, existing video analytics systems for multi-camera streams are mostly limited to (i) per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present Argus, a distributed video analytics system with \n<italic>cross-camera collaboration</i>\n on smart cameras. We identify multi-camera, multi-target tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i) dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras, taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency by up to 7.13× and 2.19× (4.86× and 1.60× compared to the state-of-the-art), while achieving comparable tracking quality.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"117-134"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Argus: Enabling Cross-Camera Collaboration for Video Analytics on Distributed Smart Cameras\",\"authors\":\"Juheon Yi;Utku Günay Acer;Fahim Kawsar;Chulhong Min\",\"doi\":\"10.1109/TMC.2024.3459409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced, comprehensive and robust analysis. However, existing video analytics systems for multi-camera streams are mostly limited to (i) per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present Argus, a distributed video analytics system with \\n<italic>cross-camera collaboration</i>\\n on smart cameras. We identify multi-camera, multi-target tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i) dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras, taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency by up to 7.13× and 2.19× (4.86× and 1.60× compared to the state-of-the-art), while achieving comparable tracking quality.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 1\",\"pages\":\"117-134\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682605/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10682605/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

重叠的相机提供了令人兴奋的机会,从不同的角度观看场景,允许更先进,全面和强大的分析。然而,现有的多摄像机流视频分析系统大多局限于(i)每个摄像机的处理和聚合以及(ii)与工作负载无关的集中处理架构。在本文中,我们提出了Argus,一个分布式视频分析系统,具有智能摄像机上的跨摄像机协作。我们将多摄像头、多目标跟踪确定为多摄像头视频分析的主要任务,并开发了一种新技术,通过利用多摄像头重叠视场中的目标时空关联,避免了冗余的、处理繁重的识别任务。我们进一步开发了一套技术,通过以下方式在没有云支持的情况下跨分布式摄像机以低延迟执行这些操作:(i)动态排序摄像机和对象检测序列;(ii)灵活分配智能摄像机的工作负载,同时考虑到网络传输和异构计算能力。对两个Nvidia Jetson设备的三个真实世界重叠相机数据集的评估表明,Argus将目标识别数量和端到端延迟减少了7.13倍和2.19倍(与最先进的设备相比,分别减少了4.86倍和1.60倍),同时实现了相当的跟踪质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Argus: Enabling Cross-Camera Collaboration for Video Analytics on Distributed Smart Cameras
Overlapping cameras offer exciting opportunities to view a scene from different angles, allowing for more advanced, comprehensive and robust analysis. However, existing video analytics systems for multi-camera streams are mostly limited to (i) per-camera processing and aggregation and (ii) workload-agnostic centralized processing architectures. In this paper, we present Argus, a distributed video analytics system with cross-camera collaboration on smart cameras. We identify multi-camera, multi-target tracking as the primary task of multi-camera video analytics and develop a novel technique that avoids redundant, processing-heavy identification tasks by leveraging object-wise spatio-temporal association in the overlapping fields of view across multiple cameras. We further develop a set of techniques to perform these operations across distributed cameras without cloud support at low latency by (i) dynamically ordering the camera and object inspection sequence and (ii) flexibly distributing the workload across smart cameras, taking into account network transmission and heterogeneous computational capacities. Evaluation of three real-world overlapping camera datasets with two Nvidia Jetson devices shows that Argus reduces the number of object identifications and end-to-end latency by up to 7.13× and 2.19× (4.86× and 1.60× compared to the state-of-the-art), while achieving comparable tracking quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1