{"title":"受仿生学启发的柔性皮肤减阻研究","authors":"Pengfei Zhao, Xin Li, Zhengjie Luo, Zhenyan Jia, Kaisheng Zhang, Xiaoping Zhang","doi":"10.3390/coatings14091189","DOIUrl":null,"url":null,"abstract":"Underwater vehicles typically rely on batteries or other energy sources for operation, where drag reduction can significantly lower energy consumption and extend operational endurance. Inspired by the skin structure of loaches, a flexible structure with scales and mucus pores was designed. First, numerical simulations were conducted. To accurately demonstrate the interaction between the flexible flow field and the fluid flow field and to capture the movement boundaries of the plates, a bidirectional fluid–structure interaction simulation method was used. The numerical results indicate that the flexible structure has a positive effect on drag reduction. In channel experiments, the drag reduction effects of flexible and non-flexible structures were compared. Both showed optimal drag reduction at a water flow speed of 2 m/s and mucus flow speed of 0.1 m/s. The maximum drag reduction rate for the flexible structure was 28.5%, compared to 22.8% for the non-flexible structure. This difference is attributed to the flexible structure altering the flow pattern of the near-wall boundary layer, reducing the velocity gradient of the boundary layer, and increasing its thickness. The findings of this study can provide guidance for future research on flexible surface drag reduction technologies.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"47 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Drag Reduction for Flexible Skin Inspired by Bionics\",\"authors\":\"Pengfei Zhao, Xin Li, Zhengjie Luo, Zhenyan Jia, Kaisheng Zhang, Xiaoping Zhang\",\"doi\":\"10.3390/coatings14091189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater vehicles typically rely on batteries or other energy sources for operation, where drag reduction can significantly lower energy consumption and extend operational endurance. Inspired by the skin structure of loaches, a flexible structure with scales and mucus pores was designed. First, numerical simulations were conducted. To accurately demonstrate the interaction between the flexible flow field and the fluid flow field and to capture the movement boundaries of the plates, a bidirectional fluid–structure interaction simulation method was used. The numerical results indicate that the flexible structure has a positive effect on drag reduction. In channel experiments, the drag reduction effects of flexible and non-flexible structures were compared. Both showed optimal drag reduction at a water flow speed of 2 m/s and mucus flow speed of 0.1 m/s. The maximum drag reduction rate for the flexible structure was 28.5%, compared to 22.8% for the non-flexible structure. This difference is attributed to the flexible structure altering the flow pattern of the near-wall boundary layer, reducing the velocity gradient of the boundary layer, and increasing its thickness. The findings of this study can provide guidance for future research on flexible surface drag reduction technologies.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091189\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091189","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Research on Drag Reduction for Flexible Skin Inspired by Bionics
Underwater vehicles typically rely on batteries or other energy sources for operation, where drag reduction can significantly lower energy consumption and extend operational endurance. Inspired by the skin structure of loaches, a flexible structure with scales and mucus pores was designed. First, numerical simulations were conducted. To accurately demonstrate the interaction between the flexible flow field and the fluid flow field and to capture the movement boundaries of the plates, a bidirectional fluid–structure interaction simulation method was used. The numerical results indicate that the flexible structure has a positive effect on drag reduction. In channel experiments, the drag reduction effects of flexible and non-flexible structures were compared. Both showed optimal drag reduction at a water flow speed of 2 m/s and mucus flow speed of 0.1 m/s. The maximum drag reduction rate for the flexible structure was 28.5%, compared to 22.8% for the non-flexible structure. This difference is attributed to the flexible structure altering the flow pattern of the near-wall boundary layer, reducing the velocity gradient of the boundary layer, and increasing its thickness. The findings of this study can provide guidance for future research on flexible surface drag reduction technologies.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material