利用 cGAN 增强基于环境光反射的窃听功能

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-09-13 DOI:10.1109/TMC.2024.3460392
Guoming Zhang;Heqiang Fu;Zhijie Xiang;Xinyan Zhou;Pengfei Hu;Xiuzhen Cheng;Yanni Yang
{"title":"利用 cGAN 增强基于环境光反射的窃听功能","authors":"Guoming Zhang;Heqiang Fu;Zhijie Xiang;Xinyan Zhou;Pengfei Hu;Xiuzhen Cheng;Yanni Yang","doi":"10.1109/TMC.2024.3460392","DOIUrl":null,"url":null,"abstract":"Sound eavesdropping using light has been an area of considerable interest and concern, as it can be achieved over long distances. However, previous work has often lacked stealth (e.g., active emission of laser beams) or been limited in the range of realistic applications (e.g., using direct light from a device’s indicator LED or a hanging light bulb). In this paper, we present \n<monospace>EchoLight</monospace>\n, a non-intrusive, passive and long-range sound eavesdropping method that utilizes the extensive reflection of ambient light from vibrating objects to reconstruct sound. We analyze the relationship between reflection light signals and sound signals, particularly in situations where the frequency response of reflective objects and the efficiency of diffuse reflection are suboptimal. Based on this analysis, we have introduced an algorithm based on cGAN to address the issues of nonlinear distortion and spectral absence in the frequency domain of sound. We extensively evaluate \n<monospace>EchoLight</monospace>\n’s performance in a variety of real-world scenarios. It demonstrates the ability to accurately reconstruct audio from a variety of source distances, attack distances, sound levels, light sources, and reflective materials. Our results reveal that the reconstructed audio exhibits a high degree of similarity to the original audio over 40 meters of attack distance.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"72-85"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ambient Light Reflection-Based Eavesdropping Enhanced With cGAN\",\"authors\":\"Guoming Zhang;Heqiang Fu;Zhijie Xiang;Xinyan Zhou;Pengfei Hu;Xiuzhen Cheng;Yanni Yang\",\"doi\":\"10.1109/TMC.2024.3460392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound eavesdropping using light has been an area of considerable interest and concern, as it can be achieved over long distances. However, previous work has often lacked stealth (e.g., active emission of laser beams) or been limited in the range of realistic applications (e.g., using direct light from a device’s indicator LED or a hanging light bulb). In this paper, we present \\n<monospace>EchoLight</monospace>\\n, a non-intrusive, passive and long-range sound eavesdropping method that utilizes the extensive reflection of ambient light from vibrating objects to reconstruct sound. We analyze the relationship between reflection light signals and sound signals, particularly in situations where the frequency response of reflective objects and the efficiency of diffuse reflection are suboptimal. Based on this analysis, we have introduced an algorithm based on cGAN to address the issues of nonlinear distortion and spectral absence in the frequency domain of sound. We extensively evaluate \\n<monospace>EchoLight</monospace>\\n’s performance in a variety of real-world scenarios. It demonstrates the ability to accurately reconstruct audio from a variety of source distances, attack distances, sound levels, light sources, and reflective materials. Our results reveal that the reconstructed audio exhibits a high degree of similarity to the original audio over 40 meters of attack distance.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 1\",\"pages\":\"72-85\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679898/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679898/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

利用光来窃听声音一直是一个值得关注的领域,因为它可以在很长的距离上实现。然而,以前的工作通常缺乏隐蔽性(例如,激光束的主动发射)或在实际应用范围内受到限制(例如,使用设备指示灯LED或悬挂灯泡的直接光)。在本文中,我们提出了EchoLight,一种非侵入性,被动和远程的声音窃听方法,利用振动物体的环境光的广泛反射来重建声音。我们分析了反射光信号和声音信号之间的关系,特别是在反射物体的频率响应和漫反射效率不理想的情况下。在此基础上,我们提出了一种基于cGAN的算法来解决声音频域的非线性失真和频谱缺失问题。我们广泛评估了EchoLight在各种现实场景中的性能。它展示了从各种源距离、攻击距离、声级、光源和反射材料中准确重建音频的能力。结果表明,在40米的攻击距离内,重建的音频与原始音频具有高度的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ambient Light Reflection-Based Eavesdropping Enhanced With cGAN
Sound eavesdropping using light has been an area of considerable interest and concern, as it can be achieved over long distances. However, previous work has often lacked stealth (e.g., active emission of laser beams) or been limited in the range of realistic applications (e.g., using direct light from a device’s indicator LED or a hanging light bulb). In this paper, we present EchoLight , a non-intrusive, passive and long-range sound eavesdropping method that utilizes the extensive reflection of ambient light from vibrating objects to reconstruct sound. We analyze the relationship between reflection light signals and sound signals, particularly in situations where the frequency response of reflective objects and the efficiency of diffuse reflection are suboptimal. Based on this analysis, we have introduced an algorithm based on cGAN to address the issues of nonlinear distortion and spectral absence in the frequency domain of sound. We extensively evaluate EchoLight ’s performance in a variety of real-world scenarios. It demonstrates the ability to accurately reconstruct audio from a variety of source distances, attack distances, sound levels, light sources, and reflective materials. Our results reveal that the reconstructed audio exhibits a high degree of similarity to the original audio over 40 meters of attack distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Harmonizing Global and Local Class Imbalance for Federated Learning O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA) CV-Cast: Computer Vision–Oriented Linear Coding and Transmission AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation BIT-FL: Blockchain-Enabled Incentivized and Secure Federated Learning Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1