{"title":"一种新型细菌的分离和特征描述:在嗜热条件下,该细菌的胞外酯酶可促进聚羟基乙酸的降解","authors":"Takuma Kobayashi , Toshiaki Nakajima-Kambe","doi":"10.1016/j.polymdegradstab.2024.111007","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(glycolic acid) (PGA) is widely utilized in the shale oil and gas industry owing to its biodegradable nature, as well as superior mechanical and barrier properties. However, PGA degradability is limited by environmental conditions such as temperature and pH, and using acids to optimize the degradation can have adverse environmental impact. Thus, it is essential to identify methods that can effectively promote the degradation of PGA under mild conditions, such as microbial degradation. In the present study, strain DB14, a bacterium that promotes PGA degradation, was isolated from drain water of a steam pipeline. Sequence analysis of the 16S rRNA gene of the bacterium revealed that it is mostly closely related to <em>Geobacillus icigianus</em>; however, it also differed from <em>Geobacillus icigianus</em> in several physiological properties. To investigate PGA degradation by strain DB14, a PGA film and disc were incubated with the strain. The residual weight of the PGA film (thickness: 170 μm) significantly reduced after incubation, whereas the decrease in the thickness of the PGA disc (thickness: 3 mm) was relatively small. The penetration of water, the bacterium, and the extracellular enzymes into the interior from the reaction-erosion front of the PGA disc may be inhibited by the high barrier performance of PGA. Strain DB14 was also found to change the pH of the surrounding environment to approximately 8–9. To investigate the effect of pH on PGA degradability, degradation tests with crude extracellular enzymes derived from strain DB14 were conducted in various buffers. The results showed that the degradation activity was highest at pH 8, which implied that DB14 efficiently maximized the hydrolytic capacity of its enzyme for degrading PGA. Thus, this study provides a basis for developing environmentally friendly technologies that can promote the degradation of PGA molding articles, especially those used in wellbores for oil and gas recovery.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111007"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and characterization of a novel bacterium that promotes the degradation of poly(glycolic acid) by its extracellular esterase under thermophilic conditions\",\"authors\":\"Takuma Kobayashi , Toshiaki Nakajima-Kambe\",\"doi\":\"10.1016/j.polymdegradstab.2024.111007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly(glycolic acid) (PGA) is widely utilized in the shale oil and gas industry owing to its biodegradable nature, as well as superior mechanical and barrier properties. However, PGA degradability is limited by environmental conditions such as temperature and pH, and using acids to optimize the degradation can have adverse environmental impact. Thus, it is essential to identify methods that can effectively promote the degradation of PGA under mild conditions, such as microbial degradation. In the present study, strain DB14, a bacterium that promotes PGA degradation, was isolated from drain water of a steam pipeline. Sequence analysis of the 16S rRNA gene of the bacterium revealed that it is mostly closely related to <em>Geobacillus icigianus</em>; however, it also differed from <em>Geobacillus icigianus</em> in several physiological properties. To investigate PGA degradation by strain DB14, a PGA film and disc were incubated with the strain. The residual weight of the PGA film (thickness: 170 μm) significantly reduced after incubation, whereas the decrease in the thickness of the PGA disc (thickness: 3 mm) was relatively small. The penetration of water, the bacterium, and the extracellular enzymes into the interior from the reaction-erosion front of the PGA disc may be inhibited by the high barrier performance of PGA. Strain DB14 was also found to change the pH of the surrounding environment to approximately 8–9. To investigate the effect of pH on PGA degradability, degradation tests with crude extracellular enzymes derived from strain DB14 were conducted in various buffers. The results showed that the degradation activity was highest at pH 8, which implied that DB14 efficiently maximized the hydrolytic capacity of its enzyme for degrading PGA. Thus, this study provides a basis for developing environmentally friendly technologies that can promote the degradation of PGA molding articles, especially those used in wellbores for oil and gas recovery.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111007\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003513\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003513","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Isolation and characterization of a novel bacterium that promotes the degradation of poly(glycolic acid) by its extracellular esterase under thermophilic conditions
Poly(glycolic acid) (PGA) is widely utilized in the shale oil and gas industry owing to its biodegradable nature, as well as superior mechanical and barrier properties. However, PGA degradability is limited by environmental conditions such as temperature and pH, and using acids to optimize the degradation can have adverse environmental impact. Thus, it is essential to identify methods that can effectively promote the degradation of PGA under mild conditions, such as microbial degradation. In the present study, strain DB14, a bacterium that promotes PGA degradation, was isolated from drain water of a steam pipeline. Sequence analysis of the 16S rRNA gene of the bacterium revealed that it is mostly closely related to Geobacillus icigianus; however, it also differed from Geobacillus icigianus in several physiological properties. To investigate PGA degradation by strain DB14, a PGA film and disc were incubated with the strain. The residual weight of the PGA film (thickness: 170 μm) significantly reduced after incubation, whereas the decrease in the thickness of the PGA disc (thickness: 3 mm) was relatively small. The penetration of water, the bacterium, and the extracellular enzymes into the interior from the reaction-erosion front of the PGA disc may be inhibited by the high barrier performance of PGA. Strain DB14 was also found to change the pH of the surrounding environment to approximately 8–9. To investigate the effect of pH on PGA degradability, degradation tests with crude extracellular enzymes derived from strain DB14 were conducted in various buffers. The results showed that the degradation activity was highest at pH 8, which implied that DB14 efficiently maximized the hydrolytic capacity of its enzyme for degrading PGA. Thus, this study provides a basis for developing environmentally friendly technologies that can promote the degradation of PGA molding articles, especially those used in wellbores for oil and gas recovery.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.