Yuyu Huang , Jindong An , Guoqing Huang , Ruikun Wang , Huimin Liu , Ping Xiao , Shiqing Wang , Yue Zhang
{"title":"从机理上深入了解氧气和二氧化硫在锰改性的 Fe2O3 基吸附剂上提高砷去除率的协同效应","authors":"Yuyu Huang , Jindong An , Guoqing Huang , Ruikun Wang , Huimin Liu , Ping Xiao , Shiqing Wang , Yue Zhang","doi":"10.1016/j.susc.2024.122614","DOIUrl":null,"url":null,"abstract":"<div><p>Iron-based materials are promising sorbents for controlling arsenic emissions. However, the effects of SO<sub>2</sub>, especially the synergistic mechanism of As<sub>2</sub>O<sub>3</sub> adsorption under the combined effects of O<sub>2</sub> and SO<sub>2</sub>, remain inadequately explored. This study investigated for the first time the impact of the newly formed surface resulting from the adsorption and dissociation of O<sub>2</sub> and SO<sub>2</sub> on the adsorption of As<sub>2</sub>O<sub>3</sub>. The results showed that Mn<sub>3f</sub> and Fe<sub>3f</sub> sites were the active sites for the adsorption of O<sub>2</sub> and SO<sub>2</sub>, which competed with As<sub>2</sub>O<sub>3</sub> and hindered its adsorption. Conversely, dissociation created more reactive sites, which promoted the process. Selectivity analysis revealed that As<sub>2</sub>O<sub>3</sub> preferentially adsorbed on the dissociated surface, highlighting the dominance of the promotion effect. Finally, starting from the adsorption sequence of O<sub>2</sub> and SO<sub>2</sub>, the impact of arsenic adsorption and oxidation was examined on sorbents created through the sequential adsorption of O<sub>2</sub> and SO<sub>2</sub>. Regardless of the adsorption sequence, active O atoms with catalytic effects were exposed, supporting the enhanced removal of arsenic under the synergistic effect of O<sub>2</sub> and SO<sub>2</sub>. Building upon this analysis, a theoretical framework for efficiently removing As<sub>2</sub>O<sub>3</sub> from O<sub>2</sub> and SO<sub>2</sub> flue gases using Mn-modified Fe<sub>2</sub>O<sub>3</sub>-based materials was developed.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"751 ","pages":"Article 122614"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insight into the synergistic effect of O2 and SO2 for improving removal of arsenic over Mn-modified Fe2O3-based sorbent\",\"authors\":\"Yuyu Huang , Jindong An , Guoqing Huang , Ruikun Wang , Huimin Liu , Ping Xiao , Shiqing Wang , Yue Zhang\",\"doi\":\"10.1016/j.susc.2024.122614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iron-based materials are promising sorbents for controlling arsenic emissions. However, the effects of SO<sub>2</sub>, especially the synergistic mechanism of As<sub>2</sub>O<sub>3</sub> adsorption under the combined effects of O<sub>2</sub> and SO<sub>2</sub>, remain inadequately explored. This study investigated for the first time the impact of the newly formed surface resulting from the adsorption and dissociation of O<sub>2</sub> and SO<sub>2</sub> on the adsorption of As<sub>2</sub>O<sub>3</sub>. The results showed that Mn<sub>3f</sub> and Fe<sub>3f</sub> sites were the active sites for the adsorption of O<sub>2</sub> and SO<sub>2</sub>, which competed with As<sub>2</sub>O<sub>3</sub> and hindered its adsorption. Conversely, dissociation created more reactive sites, which promoted the process. Selectivity analysis revealed that As<sub>2</sub>O<sub>3</sub> preferentially adsorbed on the dissociated surface, highlighting the dominance of the promotion effect. Finally, starting from the adsorption sequence of O<sub>2</sub> and SO<sub>2</sub>, the impact of arsenic adsorption and oxidation was examined on sorbents created through the sequential adsorption of O<sub>2</sub> and SO<sub>2</sub>. Regardless of the adsorption sequence, active O atoms with catalytic effects were exposed, supporting the enhanced removal of arsenic under the synergistic effect of O<sub>2</sub> and SO<sub>2</sub>. Building upon this analysis, a theoretical framework for efficiently removing As<sub>2</sub>O<sub>3</sub> from O<sub>2</sub> and SO<sub>2</sub> flue gases using Mn-modified Fe<sub>2</sub>O<sub>3</sub>-based materials was developed.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"751 \",\"pages\":\"Article 122614\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001651\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001651","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mechanistic insight into the synergistic effect of O2 and SO2 for improving removal of arsenic over Mn-modified Fe2O3-based sorbent
Iron-based materials are promising sorbents for controlling arsenic emissions. However, the effects of SO2, especially the synergistic mechanism of As2O3 adsorption under the combined effects of O2 and SO2, remain inadequately explored. This study investigated for the first time the impact of the newly formed surface resulting from the adsorption and dissociation of O2 and SO2 on the adsorption of As2O3. The results showed that Mn3f and Fe3f sites were the active sites for the adsorption of O2 and SO2, which competed with As2O3 and hindered its adsorption. Conversely, dissociation created more reactive sites, which promoted the process. Selectivity analysis revealed that As2O3 preferentially adsorbed on the dissociated surface, highlighting the dominance of the promotion effect. Finally, starting from the adsorption sequence of O2 and SO2, the impact of arsenic adsorption and oxidation was examined on sorbents created through the sequential adsorption of O2 and SO2. Regardless of the adsorption sequence, active O atoms with catalytic effects were exposed, supporting the enhanced removal of arsenic under the synergistic effect of O2 and SO2. Building upon this analysis, a theoretical framework for efficiently removing As2O3 from O2 and SO2 flue gases using Mn-modified Fe2O3-based materials was developed.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.