CAMS 和 CMAQ 对美国大陆 (CONUS) 表面 PM2.5 和 O3 的分析比较

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2024-09-18 DOI:10.1016/j.atmosenv.2024.120833
Jared A. Lee , Stefano Alessandrini , Ju-Hye Kim , Scott Meech , Rajesh Kumar , Irina V. Djalalova , James M. Wilczak
{"title":"CAMS 和 CMAQ 对美国大陆 (CONUS) 表面 PM2.5 和 O3 的分析比较","authors":"Jared A. Lee ,&nbsp;Stefano Alessandrini ,&nbsp;Ju-Hye Kim ,&nbsp;Scott Meech ,&nbsp;Rajesh Kumar ,&nbsp;Irina V. Djalalova ,&nbsp;James M. Wilczak","doi":"10.1016/j.atmosenv.2024.120833","DOIUrl":null,"url":null,"abstract":"<div><p>To reduce economic and health impacts from poor air quality (AQ) in the U.S., the National Air Quality Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of surface-level ozone (O<sub>3</sub>), fine particulate matter (PM<sub>2.5</sub>), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit their exposure. The NAQFC uses the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model for operational forecasts. This study is a first step in proposing a potential upgrade to the current operational NAQFC bias-correction system, by examining potential candidates for a gridded analysis (“truth”) dataset.</p><p>In this paper, we compare the performance of the “analysis” time series over the period of August 2020–December 2021 at EPA AirNow stations for both PM<sub>2.5</sub> and O<sub>3</sub> from raw Copernicus Atmosphere Monitoring Service (CAMS) reanalyses, raw CAMS near real-time forecasts, raw near real-time CMAQ forecasts, bias-corrected CAMS forecasts, and bias-corrected CMAQ forecasts (CMAQ FC BC). This 17-month period spans two wildfire seasons, to assess model “analysis” performance in high-end AQ events. In addition to determining the best-performing gridded product, this process allows us to benchmark the performance of CMAQ forecasts against other global datasets (CAMS reanalysis and forecasts). For both PM<sub>2.5</sub> and O<sub>3</sub>, the bias correction algorithm employed here greatly improved upon the raw model time series, and CMAQ FC BC was the best-performing model “analysis” time series, having the lowest RMSE, smallest bias error, and largest critical success index at multiple thresholds.</p></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120833"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of CAMS and CMAQ analyses of surface-level PM2.5 and O3 over the conterminous United States (CONUS)\",\"authors\":\"Jared A. Lee ,&nbsp;Stefano Alessandrini ,&nbsp;Ju-Hye Kim ,&nbsp;Scott Meech ,&nbsp;Rajesh Kumar ,&nbsp;Irina V. Djalalova ,&nbsp;James M. Wilczak\",\"doi\":\"10.1016/j.atmosenv.2024.120833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To reduce economic and health impacts from poor air quality (AQ) in the U.S., the National Air Quality Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of surface-level ozone (O<sub>3</sub>), fine particulate matter (PM<sub>2.5</sub>), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit their exposure. The NAQFC uses the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model for operational forecasts. This study is a first step in proposing a potential upgrade to the current operational NAQFC bias-correction system, by examining potential candidates for a gridded analysis (“truth”) dataset.</p><p>In this paper, we compare the performance of the “analysis” time series over the period of August 2020–December 2021 at EPA AirNow stations for both PM<sub>2.5</sub> and O<sub>3</sub> from raw Copernicus Atmosphere Monitoring Service (CAMS) reanalyses, raw CAMS near real-time forecasts, raw near real-time CMAQ forecasts, bias-corrected CAMS forecasts, and bias-corrected CMAQ forecasts (CMAQ FC BC). This 17-month period spans two wildfire seasons, to assess model “analysis” performance in high-end AQ events. In addition to determining the best-performing gridded product, this process allows us to benchmark the performance of CMAQ forecasts against other global datasets (CAMS reanalysis and forecasts). For both PM<sub>2.5</sub> and O<sub>3</sub>, the bias correction algorithm employed here greatly improved upon the raw model time series, and CMAQ FC BC was the best-performing model “analysis” time series, having the lowest RMSE, smallest bias error, and largest critical success index at multiple thresholds.</p></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120833\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005089\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005089","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了减少美国恶劣空气质量(AQ)对经济和健康造成的影响,美国国家海洋和大气管理局(NOAA)的国家空气质量预测能力(NAQFC)对地表臭氧(O3)、细颗粒物(PM2.5)和其他污染物进行预测,以便提前发布通知和警告,帮助个人和社区限制其暴露量。NAQFC 使用美国环保署 (EPA) 的社区多尺度空气质量 (CMAQ) 模型进行业务预测。本文比较了 2020 年 8 月至 2021 年 12 月期间 EPA AirNow 站点 PM2.5 和 O3 的 "分析 "时间序列的性能。本文比较了 2020 年 8 月至 2021 年 12 月期间 EPA AirNow 站点 PM2.5 和 O3 的 "分析 "时间序列的性能,这些时间序列来自原始哥白尼大气监测服务(CAMS)再分析、原始 CAMS 近实时预测、原始近实时 CMAQ 预测、偏差校正 CAMS 预测和偏差校正 CMAQ 预测(CMAQ FC BC)。这 17 个月的时间跨越了两个野火季节,以评估高端空气质量事件中的模型 "分析 "性能。除了确定性能最佳的网格产品外,这一过程还使我们能够将 CMAQ 预测的性能与其他全球数据集(CAMS 再分析和预测)进行比较。对于 PM2.5 和 O3,这里采用的偏差校正算法大大改进了原始模式时间序列,CMAQ FC BC 是表现最佳的模式 "分析 "时间序列,在多个阈值下具有最低的 RMSE、最小的偏差误差和最大的临界成功指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of CAMS and CMAQ analyses of surface-level PM2.5 and O3 over the conterminous United States (CONUS)

To reduce economic and health impacts from poor air quality (AQ) in the U.S., the National Air Quality Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of surface-level ozone (O3), fine particulate matter (PM2.5), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit their exposure. The NAQFC uses the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) model for operational forecasts. This study is a first step in proposing a potential upgrade to the current operational NAQFC bias-correction system, by examining potential candidates for a gridded analysis (“truth”) dataset.

In this paper, we compare the performance of the “analysis” time series over the period of August 2020–December 2021 at EPA AirNow stations for both PM2.5 and O3 from raw Copernicus Atmosphere Monitoring Service (CAMS) reanalyses, raw CAMS near real-time forecasts, raw near real-time CMAQ forecasts, bias-corrected CAMS forecasts, and bias-corrected CMAQ forecasts (CMAQ FC BC). This 17-month period spans two wildfire seasons, to assess model “analysis” performance in high-end AQ events. In addition to determining the best-performing gridded product, this process allows us to benchmark the performance of CMAQ forecasts against other global datasets (CAMS reanalysis and forecasts). For both PM2.5 and O3, the bias correction algorithm employed here greatly improved upon the raw model time series, and CMAQ FC BC was the best-performing model “analysis” time series, having the lowest RMSE, smallest bias error, and largest critical success index at multiple thresholds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
137Cs in outdoor air due to Chernobyl-contaminated wood combustion for residential heating in Thessaloniki, North Greece Reaction between peracetic acid and carbonyl oxide: Quantitative kinetics and insight into implications in the atmosphere Aerosol retrievals derived from a low-cost Calitoo sun-photometer taken on board a research vessel Development of an online cloud fog monitor: Design, laboratory, and field deployment at an unoccupied coastal site in Eastern China The coupling model of random forest and interpretable method quantifies the response relationship between PM2.5 and influencing factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1