评估中国的太阳能潜力:不确定性量化和经济分析

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Resources Conservation and Recycling Pub Date : 2024-09-20 DOI:10.1016/j.resconrec.2024.107908
Gege Yin , Xiaojia He , Yue Qin , Lei Chen , Yuan Hu , Yu Liu , Chuan Zhang
{"title":"评估中国的太阳能潜力:不确定性量化和经济分析","authors":"Gege Yin ,&nbsp;Xiaojia He ,&nbsp;Yue Qin ,&nbsp;Lei Chen ,&nbsp;Yuan Hu ,&nbsp;Yu Liu ,&nbsp;Chuan Zhang","doi":"10.1016/j.resconrec.2024.107908","DOIUrl":null,"url":null,"abstract":"<div><p>Solar power is vital for China's future energy pathways to achieve the goal of 2060 carbon neutrality. Previous studies have suggested that China's solar energy resource potential surpass the projected nationwide power demand in 2060, yet the uncertainty quantification and cost competitiveness of such resource potential are less studied. Therefore, we applied an integrated framework to simulate China's solar photovoltaic (PV) technical potential, and incorporated potential uncertainty stemming from climate change, land use dynamics, and technological advancements. In addition, we constructed the solar energy supply curve for each province and calculated the economic potential. According to our results, approximately 78.6 % and 99.9 % of China's technical solar PV potential are priced lower than the benchmark price of coal-fired energy in pessimistic and optimistic scenario. These findings highlight the significant technical and economic potential of solar PV as a cost-effective alternative to coal-fired electricity to meet China's growing electricity demands.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107908"},"PeriodicalIF":11.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing China's solar power potential: Uncertainty quantification and economic analysis\",\"authors\":\"Gege Yin ,&nbsp;Xiaojia He ,&nbsp;Yue Qin ,&nbsp;Lei Chen ,&nbsp;Yuan Hu ,&nbsp;Yu Liu ,&nbsp;Chuan Zhang\",\"doi\":\"10.1016/j.resconrec.2024.107908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar power is vital for China's future energy pathways to achieve the goal of 2060 carbon neutrality. Previous studies have suggested that China's solar energy resource potential surpass the projected nationwide power demand in 2060, yet the uncertainty quantification and cost competitiveness of such resource potential are less studied. Therefore, we applied an integrated framework to simulate China's solar photovoltaic (PV) technical potential, and incorporated potential uncertainty stemming from climate change, land use dynamics, and technological advancements. In addition, we constructed the solar energy supply curve for each province and calculated the economic potential. According to our results, approximately 78.6 % and 99.9 % of China's technical solar PV potential are priced lower than the benchmark price of coal-fired energy in pessimistic and optimistic scenario. These findings highlight the significant technical and economic potential of solar PV as a cost-effective alternative to coal-fired electricity to meet China's growing electricity demands.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"212 \",\"pages\":\"Article 107908\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005019\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005019","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能发电对于中国未来实现 2060 年碳中和目标的能源途径至关重要。以往的研究表明,中国的太阳能资源潜力超过了 2060 年全国范围内的预计电力需求,但对这种资源潜力的不确定性量化和成本竞争力研究较少。因此,我们采用了一个综合框架来模拟中国的太阳能光伏(PV)技术潜力,并纳入了气候变化、土地利用动态和技术进步带来的潜在不确定性。此外,我们还构建了各省的太阳能供应曲线,并计算了经济潜力。结果显示,在悲观和乐观情景下,中国约 78.6% 和 99.9% 的太阳能光伏技术潜力价格低于燃煤能源基准价格。这些研究结果凸显了太阳能光伏发电在技术和经济方面的巨大潜力,它是一种经济高效的燃煤发电替代品,可满足中国日益增长的电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing China's solar power potential: Uncertainty quantification and economic analysis

Solar power is vital for China's future energy pathways to achieve the goal of 2060 carbon neutrality. Previous studies have suggested that China's solar energy resource potential surpass the projected nationwide power demand in 2060, yet the uncertainty quantification and cost competitiveness of such resource potential are less studied. Therefore, we applied an integrated framework to simulate China's solar photovoltaic (PV) technical potential, and incorporated potential uncertainty stemming from climate change, land use dynamics, and technological advancements. In addition, we constructed the solar energy supply curve for each province and calculated the economic potential. According to our results, approximately 78.6 % and 99.9 % of China's technical solar PV potential are priced lower than the benchmark price of coal-fired energy in pessimistic and optimistic scenario. These findings highlight the significant technical and economic potential of solar PV as a cost-effective alternative to coal-fired electricity to meet China's growing electricity demands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
期刊最新文献
Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting Stability of China's terrestrial ecosystems carbon sink during 2000-2020 Self-sufficiency of the European Union in critical raw materials for E-mobility Assessing the environmental and economic impacts of intracity express delivery: Pathways for carbon reduction and cost efficiency in China Selective anchoring of phosphate groups coupled with swift interlayer cation exchange for record-high capacity cobalt adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1