Michele Pagone , Giordana Bucchioni , Francesco Alfino , Carlo Novara
{"title":"利用非线性 MPC 和庞特里亚金原理进行自主月球交会轨迹规划和控制","authors":"Michele Pagone , Giordana Bucchioni , Francesco Alfino , Carlo Novara","doi":"10.1016/j.ifacsc.2024.100282","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the application of Nonlinear Model Predictive Control (NMPC) techniques, based on the Pontryagin Minimum Principle, for a minimum-propellant autonomous rendezvous maneuver in non-Keplerian Lunar orbits. The relative motion between the chaser and the target is described by the nonlinear dynamics of the circular restricted three body-problem, posing unique challenges due to the complex and unstable dynamics of near-rectilinear halo orbits. Key aspects of the proposed NMPC include trajectory optimization, maneuver planning, and real-time control, leveraging on its ability to satisfy complex mission requirements while ensuring safe and efficient spacecraft operations and in the presence of input and nonlinear/non-convex state constraints. The proposed formulation allows the design of a minimum-propellant controller, whose optimal control signal results to be bang–bang in time. A case study based on the Artemis III mission – where the docking of the Orion spacecraft to the Gateway station is planned – is illustrated in order to demonstrate the efficiency of the proposed approach, showcasing its potential for enhancing target tracking accuracy, while reducing propellant consumption.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100282"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Lunar rendezvous trajectory planning and control using nonlinear MPC and Pontryagin’s principle\",\"authors\":\"Michele Pagone , Giordana Bucchioni , Francesco Alfino , Carlo Novara\",\"doi\":\"10.1016/j.ifacsc.2024.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the application of Nonlinear Model Predictive Control (NMPC) techniques, based on the Pontryagin Minimum Principle, for a minimum-propellant autonomous rendezvous maneuver in non-Keplerian Lunar orbits. The relative motion between the chaser and the target is described by the nonlinear dynamics of the circular restricted three body-problem, posing unique challenges due to the complex and unstable dynamics of near-rectilinear halo orbits. Key aspects of the proposed NMPC include trajectory optimization, maneuver planning, and real-time control, leveraging on its ability to satisfy complex mission requirements while ensuring safe and efficient spacecraft operations and in the presence of input and nonlinear/non-convex state constraints. The proposed formulation allows the design of a minimum-propellant controller, whose optimal control signal results to be bang–bang in time. A case study based on the Artemis III mission – where the docking of the Orion spacecraft to the Gateway station is planned – is illustrated in order to demonstrate the efficiency of the proposed approach, showcasing its potential for enhancing target tracking accuracy, while reducing propellant consumption.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"30 \",\"pages\":\"Article 100282\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了基于庞特里亚金最小原理的非线性模型预测控制(NMPC)技术在非开普勒月球轨道最小推进剂自主交会机动中的应用。追逐者和目标之间的相对运动由圆形受限三体问题的非线性动力学描述,由于近直角光环轨道的动力学复杂且不稳定,因此带来了独特的挑战。拟议的 NMPC 的主要方面包括轨迹优化、机动规划和实时控制,利用其满足复杂任务要求的能力,同时确保航天器在输入和非线性/非凸状态约束下安全高效地运行。所提出的公式允许设计一个最小推进力控制器,其最优控制信号结果在时间上是 "砰砰 "的。为了证明所提方法的效率,展示其在提高目标跟踪精度、减少推进剂消耗方面的潜力,以 Artemis III 任务为基础进行了案例研究--该任务计划将猎户座飞船与网关站对接。
Autonomous Lunar rendezvous trajectory planning and control using nonlinear MPC and Pontryagin’s principle
This paper explores the application of Nonlinear Model Predictive Control (NMPC) techniques, based on the Pontryagin Minimum Principle, for a minimum-propellant autonomous rendezvous maneuver in non-Keplerian Lunar orbits. The relative motion between the chaser and the target is described by the nonlinear dynamics of the circular restricted three body-problem, posing unique challenges due to the complex and unstable dynamics of near-rectilinear halo orbits. Key aspects of the proposed NMPC include trajectory optimization, maneuver planning, and real-time control, leveraging on its ability to satisfy complex mission requirements while ensuring safe and efficient spacecraft operations and in the presence of input and nonlinear/non-convex state constraints. The proposed formulation allows the design of a minimum-propellant controller, whose optimal control signal results to be bang–bang in time. A case study based on the Artemis III mission – where the docking of the Orion spacecraft to the Gateway station is planned – is illustrated in order to demonstrate the efficiency of the proposed approach, showcasing its potential for enhancing target tracking accuracy, while reducing propellant consumption.