作为青霉素结合蛋白抑制剂的新型 3-氨基-4-取代单环 ß-内酰胺的合成与生化评估。

IF 2.1 4区 医学 Q3 PHARMACOLOGY & PHARMACY Acta Pharmaceutica Pub Date : 2024-09-14 Print Date: 2024-09-01 DOI:10.2478/acph-2024-0024
Katarina Grabrijan, Nika Strašek Benedik, Alen Krajnc, Krištof Bozovičar, Damijan Knez, Matic Proj, Irena Zdovc, Izidor Sosič, Carlos Contreras-Martel, Andréa Dessen, Martina Hrast Rambaher, Stanislav Gobec
{"title":"作为青霉素结合蛋白抑制剂的新型 3-氨基-4-取代单环 ß-内酰胺的合成与生化评估。","authors":"Katarina Grabrijan, Nika Strašek Benedik, Alen Krajnc, Krištof Bozovičar, Damijan Knez, Matic Proj, Irena Zdovc, Izidor Sosič, Carlos Contreras-Martel, Andréa Dessen, Martina Hrast Rambaher, Stanislav Gobec","doi":"10.2478/acph-2024-0024","DOIUrl":null,"url":null,"abstract":"<p><p>In the final phases of bacterial cell wall synthesis, penicillin-binding proteins (PBPs) catalyze the cross-linking of peptidoglycan. For many decades, effective and non-toxic β-lactam antibiotics have been successfully used as mimetics of the d-Ala-d-Ala moiety of the natural substrate and employed as irreversible inhibitors of PBPs. In the years following their discovery, the emergence of resistant bacteria led to a decline in their clinical efficacy. Using Staudinger cycloaddition, we synthesized a focused library of novel monocyclic β-lactams in which different substituents were introduced at the C4 position of the β-lactam ring, at the C3 amino position, and at the N1 lactam nitrogen. In biochemical assays, the compounds were evaluated for their inhibitory effect on the model enzyme PBP1b from <i>Streptococcus pneumoniae</i>. Upon investigation of the antibacterial activity of the newly prepared compounds against ESKAPE pathogens, some compounds showed moderate inhibition. We also examined their reactivity and selectivity in a biochemical assay with other enzymes that have a catalytic serine in the active site, such as human cholinesterases, where they also showed no inhibitory activity, highlighting their specificity for bacterial targets. These compounds form the basis for further work on new monocyclic β-lactams with improved antibacterial activity.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"74 3","pages":"423-440"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and biochemical evaluation of new 3-amido-4-substituted monocyclic ß-lactams as inhibitors of penicillin-binding protein(s).\",\"authors\":\"Katarina Grabrijan, Nika Strašek Benedik, Alen Krajnc, Krištof Bozovičar, Damijan Knez, Matic Proj, Irena Zdovc, Izidor Sosič, Carlos Contreras-Martel, Andréa Dessen, Martina Hrast Rambaher, Stanislav Gobec\",\"doi\":\"10.2478/acph-2024-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the final phases of bacterial cell wall synthesis, penicillin-binding proteins (PBPs) catalyze the cross-linking of peptidoglycan. For many decades, effective and non-toxic β-lactam antibiotics have been successfully used as mimetics of the d-Ala-d-Ala moiety of the natural substrate and employed as irreversible inhibitors of PBPs. In the years following their discovery, the emergence of resistant bacteria led to a decline in their clinical efficacy. Using Staudinger cycloaddition, we synthesized a focused library of novel monocyclic β-lactams in which different substituents were introduced at the C4 position of the β-lactam ring, at the C3 amino position, and at the N1 lactam nitrogen. In biochemical assays, the compounds were evaluated for their inhibitory effect on the model enzyme PBP1b from <i>Streptococcus pneumoniae</i>. Upon investigation of the antibacterial activity of the newly prepared compounds against ESKAPE pathogens, some compounds showed moderate inhibition. We also examined their reactivity and selectivity in a biochemical assay with other enzymes that have a catalytic serine in the active site, such as human cholinesterases, where they also showed no inhibitory activity, highlighting their specificity for bacterial targets. These compounds form the basis for further work on new monocyclic β-lactams with improved antibacterial activity.</p>\",\"PeriodicalId\":7034,\"journal\":{\"name\":\"Acta Pharmaceutica\",\"volume\":\"74 3\",\"pages\":\"423-440\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/acph-2024-0024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2024-0024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在细菌细胞壁合成的最后阶段,青霉素结合蛋白(PBPs)催化了肽聚糖的交联。几十年来,有效且无毒的 β-内酰胺类抗生素被成功地用作天然底物 d-Ala-d-Ala 分子的模拟物,并被用作 PBPs 的不可逆抑制剂。在发现这种抗生素后的几年里,耐药细菌的出现导致其临床疗效下降。我们利用施陶丁格环加成法合成了一个新型单环 β-内酰胺类化合物库,其中在 β-内酰胺环的 C4 位、C3 氨基位和 N1 内酰胺氮位引入了不同的取代基。在生化试验中,评估了这些化合物对肺炎链球菌的模型酶 PBP1b 的抑制作用。在研究新制备的化合物对 ESKAPE 病原体的抗菌活性时,一些化合物显示出中等程度的抑制作用。我们还在生化试验中检验了这些化合物与其他活性位点含有催化丝氨酸的酶类(如人类胆碱酯酶)的反应性和选择性,结果发现这些化合物也没有抑制活性,这突出表明了它们对细菌靶标的特异性。这些化合物为进一步研究具有更强抗菌活性的新型单环 β-内酰胺奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and biochemical evaluation of new 3-amido-4-substituted monocyclic ß-lactams as inhibitors of penicillin-binding protein(s).

In the final phases of bacterial cell wall synthesis, penicillin-binding proteins (PBPs) catalyze the cross-linking of peptidoglycan. For many decades, effective and non-toxic β-lactam antibiotics have been successfully used as mimetics of the d-Ala-d-Ala moiety of the natural substrate and employed as irreversible inhibitors of PBPs. In the years following their discovery, the emergence of resistant bacteria led to a decline in their clinical efficacy. Using Staudinger cycloaddition, we synthesized a focused library of novel monocyclic β-lactams in which different substituents were introduced at the C4 position of the β-lactam ring, at the C3 amino position, and at the N1 lactam nitrogen. In biochemical assays, the compounds were evaluated for their inhibitory effect on the model enzyme PBP1b from Streptococcus pneumoniae. Upon investigation of the antibacterial activity of the newly prepared compounds against ESKAPE pathogens, some compounds showed moderate inhibition. We also examined their reactivity and selectivity in a biochemical assay with other enzymes that have a catalytic serine in the active site, such as human cholinesterases, where they also showed no inhibitory activity, highlighting their specificity for bacterial targets. These compounds form the basis for further work on new monocyclic β-lactams with improved antibacterial activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmaceutica
Acta Pharmaceutica PHARMACOLOGY & PHARMACY-
CiteScore
5.20
自引率
3.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.
期刊最新文献
Complete blood count parameters and inflammation-related biomarkers in patients with colorectal carcinoma. Fall risk-increasing drugs and associated health outcomes among community-dwelling older patients: A cross-sectional study in Croatian cohort of the EuroAgeism H2020 project. Light-induced rearrangement from macrocyclic to bicyclic lactam: A case study of N-chlorinated laurolactam. Phenolic content and antioxidant activity of Croatian and German honey. Total phenolic content, flavonoid content and antioxidant potential of Petasites hybridus and related species from Croatia and considerations regarding their pharmaceutical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1