Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz
{"title":"ginmappeR:整合生物序列数据库中基因和蛋白质标识符的统一方法。","authors":"Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz","doi":"10.1093/bioadv/vbae129","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce <i>ginmappeR</i>, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, <i>ginmappeR</i> streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.</p><p><strong>Availability and implementation: </strong>from Bioconductor: https://bioconductor.org/packages/ginmappeR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387618/pdf/","citationCount":"0","resultStr":"{\"title\":\"ginmappeR: an unified approach for integrating gene and protein identifiers across biological sequence databases.\",\"authors\":\"Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz\",\"doi\":\"10.1093/bioadv/vbae129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce <i>ginmappeR</i>, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, <i>ginmappeR</i> streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.</p><p><strong>Availability and implementation: </strong>from Bioconductor: https://bioconductor.org/packages/ginmappeR.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要:由于分子生物学技术的发展,生物序列数据激增,从而产生了许多基因和蛋白质测序的开放存取数据库。然而,这些数据库的标识符之间缺乏直接的等同性,给数据整合带来了困难。为了应对这一挑战,我们引入了 ginmappeR,这是一个便于在数据库之间转换基因和蛋白质标识符的集成 R 软件包。通过提供统一的界面,ginmappeR 简化了将不同数据源整合到生物工作流中的过程,从而提高了效率和用户体验。可用性和实现:来自 Bioconductor:https://bioconductor.org/packages/ginmappeR。
ginmappeR: an unified approach for integrating gene and protein identifiers across biological sequence databases.
Summary: The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce ginmappeR, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, ginmappeR streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.
Availability and implementation: from Bioconductor: https://bioconductor.org/packages/ginmappeR.