ginmappeR:整合生物序列数据库中基因和蛋白质标识符的统一方法。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae129
Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz
{"title":"ginmappeR:整合生物序列数据库中基因和蛋白质标识符的统一方法。","authors":"Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz","doi":"10.1093/bioadv/vbae129","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce <i>ginmappeR</i>, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, <i>ginmappeR</i> streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.</p><p><strong>Availability and implementation: </strong>from Bioconductor: https://bioconductor.org/packages/ginmappeR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387618/pdf/","citationCount":"0","resultStr":"{\"title\":\"ginmappeR: an unified approach for integrating gene and protein identifiers across biological sequence databases.\",\"authors\":\"Fernando Sola, Daniel Ayala, Marina Pulido, Rafael Ayala, Lorena López-Cerero, Inma Hernández, David Ruiz\",\"doi\":\"10.1093/bioadv/vbae129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce <i>ginmappeR</i>, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, <i>ginmappeR</i> streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.</p><p><strong>Availability and implementation: </strong>from Bioconductor: https://bioconductor.org/packages/ginmappeR.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387618/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:由于分子生物学技术的发展,生物序列数据激增,从而产生了许多基因和蛋白质测序的开放存取数据库。然而,这些数据库的标识符之间缺乏直接的等同性,给数据整合带来了困难。为了应对这一挑战,我们引入了 ginmappeR,这是一个便于在数据库之间转换基因和蛋白质标识符的集成 R 软件包。通过提供统一的界面,ginmappeR 简化了将不同数据源整合到生物工作流中的过程,从而提高了效率和用户体验。可用性和实现:来自 Bioconductor:https://bioconductor.org/packages/ginmappeR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ginmappeR: an unified approach for integrating gene and protein identifiers across biological sequence databases.

Summary: The proliferation of biological sequence data, due to developments in molecular biology techniques, has led to the creation of numerous open access databases on gene and protein sequencing. However, the lack of direct equivalence between identifiers across these databases difficults data integration. To address this challenge, we introduce ginmappeR, an integrated R package facilitating the translation of gene and protein identifiers between databases. By providing a unified interface, ginmappeR streamlines the integration of diverse data sources into biological workflows, so it enhances efficiency and user experience.

Availability and implementation: from Bioconductor: https://bioconductor.org/packages/ginmappeR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1