Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose
{"title":"Megasphaera elsdenii 是肠道微生物群的共生成员,与体外发酵过程中气体产生量的增加有关。","authors":"Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose","doi":"10.1017/gmb.2023.18","DOIUrl":null,"url":null,"abstract":"<p><p><i>Megasphaera elsdenii</i> has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of <i>M. elsdenii</i> in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to <i>in vitro</i> digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable <i>M. elsdenii</i> (Me_D) and seven with no detectable <i>M. elsdenii</i> (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (<i>p</i> < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (<i>p</i> < 0.001), while the opposite was true for the Me_ND microbiomes (<i>p</i> < 0.001). Among amplicon sequence variants that were associated with gas production, <i>M. elsdenii</i> had the strongest association (<i>p</i> < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (<i>p</i> < 0.001). Gas production by <i>M. elsdenii</i> was confirmed by fermentation of sweet potatoes and acetate with human and rumen <i>M. elsdenii</i> isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that <i>M. elsdenii</i> may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406407/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Megasphaera elsdenii</i>, a commensal member of the gut microbiota, is associated with elevated gas production during <i>in vitro</i> fermentation.\",\"authors\":\"Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose\",\"doi\":\"10.1017/gmb.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Megasphaera elsdenii</i> has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of <i>M. elsdenii</i> in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to <i>in vitro</i> digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable <i>M. elsdenii</i> (Me_D) and seven with no detectable <i>M. elsdenii</i> (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (<i>p</i> < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (<i>p</i> < 0.001), while the opposite was true for the Me_ND microbiomes (<i>p</i> < 0.001). Among amplicon sequence variants that were associated with gas production, <i>M. elsdenii</i> had the strongest association (<i>p</i> < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (<i>p</i> < 0.001). Gas production by <i>M. elsdenii</i> was confirmed by fermentation of sweet potatoes and acetate with human and rumen <i>M. elsdenii</i> isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that <i>M. elsdenii</i> may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.</p>\",\"PeriodicalId\":73187,\"journal\":{\"name\":\"Gut microbiome (Cambridge, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut microbiome (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/gmb.2023.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut microbiome (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/gmb.2023.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Megasphaera elsdenii 与人类粪便微生物群在发酵过程中产生的气体有关。本研究的目的是确定Megasphaera elsdenii在微生物群产气中的作用。对芸豆和红薯进行体外消化和透析,然后用 10 个粪便微生物组进行发酵:3 个微生物组检测到了埃尔斯登酵母菌(Me_D),7 个微生物组没有检测到埃尔斯登酵母菌(Me_ND)。与 Me_ND 微生物组相比,Me_D 微生物组产生的气体更多(p p p elsdenii 与人类和瘤胃中的 M. elsdenii 分离物发酵甘薯和醋酸盐证实了 M. elsdenii 的最强关联。人类分离物在红薯和醋酸盐上产生气体。这项研究表明,M. elsdenii 可能通过利用无法消化的底物或交叉摄食醋酸盐,参与致胀气食物发酵过程中的气体产生。
Megasphaera elsdenii, a commensal member of the gut microbiota, is associated with elevated gas production during in vitro fermentation.
Megasphaera elsdenii has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of M. elsdenii in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to in vitro digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable M. elsdenii (Me_D) and seven with no detectable M. elsdenii (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (p < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (p < 0.001), while the opposite was true for the Me_ND microbiomes (p < 0.001). Among amplicon sequence variants that were associated with gas production, M. elsdenii had the strongest association (p < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (p < 0.001). Gas production by M. elsdenii was confirmed by fermentation of sweet potatoes and acetate with human and rumen M. elsdenii isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that M. elsdenii may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.