首页 > 最新文献

Gut microbiome (Cambridge, England)最新文献

英文 中文
Pro-inflammatory and hyperinsulinaemic dietary patterns are associated with specific gut microbiome profiles: a TwinsUK cohort study.
Pub Date : 2024-12-05 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2024.14
Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung

Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma, inversely and Negativibacillus, Streptococcus, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.

{"title":"Pro-inflammatory and hyperinsulinaemic dietary patterns are associated with specific gut microbiome profiles: a TwinsUK cohort study.","authors":"Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung","doi":"10.1017/gmb.2024.14","DOIUrl":"https://doi.org/10.1017/gmb.2024.14","url":null,"abstract":"<p><p>Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: <i>Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma</i>, inversely and <i>Negativibacillus, Streptococcus</i>, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Has the two decades of research on the gut microbiome resulted in making healthier choices?
Pub Date : 2024-12-02 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2024.13
M Andrea Azcarate-Peril

The gut microbiome is widely recognized for its significant contribution to maintaining human health across all life stages, from infancy to adulthood and beyond. This perspective article focuses on the impacts of well-supported microbiome research on global caesarean delivery rates, breastfeeding practices, and antimicrobial use. The article also explores the impact of dietary choices, particularly those involving ultra-processed foods, on the gut microbiota and their potential contribution to conditions like obesity, metabolic syndrome, and inflammatory diseases. This perspective aims to emphasize the need for updated guidelines and policy interventions to address the increasing global trends of caesarean deliveries, reduced breastfeeding, overuse of antibiotics, and consumption of highly processed foods to counter their adverse effects on gut health.

{"title":"Has the two decades of research on the gut microbiome resulted in making healthier choices?","authors":"M Andrea Azcarate-Peril","doi":"10.1017/gmb.2024.13","DOIUrl":"https://doi.org/10.1017/gmb.2024.13","url":null,"abstract":"<p><p>The gut microbiome is widely recognized for its significant contribution to maintaining human health across all life stages, from infancy to adulthood and beyond. This perspective article focuses on the impacts of well-supported microbiome research on global caesarean delivery rates, breastfeeding practices, and antimicrobial use. The article also explores the impact of dietary choices, particularly those involving ultra-processed foods, on the gut microbiota and their potential contribution to conditions like obesity, metabolic syndrome, and inflammatory diseases. This perspective aims to emphasize the need for updated guidelines and policy interventions to address the increasing global trends of caesarean deliveries, reduced breastfeeding, overuse of antibiotics, and consumption of highly processed foods to counter their adverse effects on gut health.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Gut" to grips with the science of the microbiome - a symposium report.
Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2024.8
Yvonne E Finnegan, Holly R Neill, Emily J Prpa, Bruno Pot

The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.

{"title":"\"Gut\" to grips with the science of the microbiome - a symposium report.","authors":"Yvonne E Finnegan, Holly R Neill, Emily J Prpa, Bruno Pot","doi":"10.1017/gmb.2024.8","DOIUrl":"https://doi.org/10.1017/gmb.2024.8","url":null,"abstract":"<p><p>The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e11"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors underlying the association between Streptococcus gallolyticus, subspecies gallolyticus infection and colorectal cancer: a mini review.
Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2024.11
David Michael Warner, Arunab Harish Mehta

Streptococcus gallolyticus, subspecies gallolyticus (Sgg) is a gram-positive bacterium associated with infective endocarditis and colorectal cancer (CRC). Sgg has features that allow the bacterium to thrive in the colorectal tumor microenvironment and further progress the development of CRC to facilitate its survival. Sgg contains 3 pili that facilitate colonic cell adhesion and translocation through phase variation. Sgg also contains bile salt hydrolase and a bacteriocin called gallocin with substantially increased activity in bile acids, which facilitates its growth in the bile acid-rich adenomatous colorectal microenvironment. Sgg also uses tumor metabolites as an energy source. Sgg also possesses tannase, which metabolizes gallotannin to be used as a carbon source and reduces the anti-apoptotic effects of tannins, driving CRC progression. Sgg also interferes with a variety of oncogenic cell signaling pathways, including the Wnt/β-catenin pathway through mechanisms that are not fully elucidated. Increased β-catenin signaling also enhances adhesion via increased expression of the extracellular matrix and increases bile acid concentrations in the lumen through downregulation of an apical bile acid transporter. Finally, Sgg induces biotransformation of toxic substrates in CRC cells, which leads to formation of toxic intermediates and DNA adducts, promoting further progression of CRC.

{"title":"Factors underlying the association between <i>Streptococcus gallolyticus</i>, subspecies <i>gallolyticus</i> infection and colorectal cancer: a mini review.","authors":"David Michael Warner, Arunab Harish Mehta","doi":"10.1017/gmb.2024.11","DOIUrl":"https://doi.org/10.1017/gmb.2024.11","url":null,"abstract":"<p><p><i>Streptococcus gallolyticus</i>, subspecies <i>gallolyticus</i> (Sgg) is a gram-positive bacterium associated with infective endocarditis and colorectal cancer (CRC). Sgg has features that allow the bacterium to thrive in the colorectal tumor microenvironment and further progress the development of CRC to facilitate its survival. Sgg contains 3 pili that facilitate colonic cell adhesion and translocation through phase variation. Sgg also contains bile salt hydrolase and a bacteriocin called gallocin with substantially increased activity in bile acids, which facilitates its growth in the bile acid-rich adenomatous colorectal microenvironment. Sgg also uses tumor metabolites as an energy source. Sgg also possesses tannase, which metabolizes gallotannin to be used as a carbon source and reduces the anti-apoptotic effects of tannins, driving CRC progression. Sgg also interferes with a variety of oncogenic cell signaling pathways, including the Wnt/β-catenin pathway through mechanisms that are not fully elucidated. Increased β-catenin signaling also enhances adhesion via increased expression of the extracellular matrix and increases bile acid concentrations in the lumen through downregulation of an apical bile acid transporter. Finally, Sgg induces biotransformation of toxic substrates in CRC cells, which leads to formation of toxic intermediates and DNA adducts, promoting further progression of CRC.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e9"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Megasphaera elsdenii, a commensal member of the gut microbiota, is associated with elevated gas production during in vitro fermentation. Megasphaera elsdenii 是肠道微生物群的共生成员,与体外发酵过程中气体产生量的增加有关。
Pub Date : 2023-12-21 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2023.18
Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose

Megasphaera elsdenii has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of M. elsdenii in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to in vitro digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable M. elsdenii (Me_D) and seven with no detectable M. elsdenii (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (p < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (p < 0.001), while the opposite was true for the Me_ND microbiomes (p < 0.001). Among amplicon sequence variants that were associated with gas production, M. elsdenii had the strongest association (p < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (p < 0.001). Gas production by M. elsdenii was confirmed by fermentation of sweet potatoes and acetate with human and rumen M. elsdenii isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that M. elsdenii may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.

Megasphaera elsdenii 与人类粪便微生物群在发酵过程中产生的气体有关。本研究的目的是确定Megasphaera elsdenii在微生物群产气中的作用。对芸豆和红薯进行体外消化和透析,然后用 10 个粪便微生物组进行发酵:3 个微生物组检测到了埃尔斯登酵母菌(Me_D),7 个微生物组没有检测到埃尔斯登酵母菌(Me_ND)。与 Me_ND 微生物组相比,Me_D 微生物组产生的气体更多(p p p elsdenii 与人类和瘤胃中的 M. elsdenii 分离物发酵甘薯和醋酸盐证实了 M. elsdenii 的最强关联。人类分离物在红薯和醋酸盐上产生气体。这项研究表明,M. elsdenii 可能通过利用无法消化的底物或交叉摄食醋酸盐,参与致胀气食物发酵过程中的气体产生。
{"title":"<i>Megasphaera elsdenii</i>, a commensal member of the gut microbiota, is associated with elevated gas production during <i>in vitro</i> fermentation.","authors":"Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose","doi":"10.1017/gmb.2023.18","DOIUrl":"https://doi.org/10.1017/gmb.2023.18","url":null,"abstract":"<p><p><i>Megasphaera elsdenii</i> has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of <i>M. elsdenii</i> in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to <i>in vitro</i> digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable <i>M. elsdenii</i> (Me_D) and seven with no detectable <i>M. elsdenii</i> (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (<i>p</i> < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (<i>p</i> < 0.001), while the opposite was true for the Me_ND microbiomes (<i>p</i> < 0.001). Among amplicon sequence variants that were associated with gas production, <i>M. elsdenii</i> had the strongest association (<i>p</i> < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (<i>p</i> < 0.001). Gas production by <i>M. elsdenii</i> was confirmed by fermentation of sweet potatoes and acetate with human and rumen <i>M. elsdenii</i> isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that <i>M. elsdenii</i> may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice 氢气和肠道微生物群是小鼠实验性结肠炎发展的潜在生物标志物
Pub Date : 2023-11-06 DOI: 10.1017/gmb.2023.17
Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
此内容的摘要不可用,因此提供了预览。当您可以访问此内容时,可以通过“保存PDF”操作按钮获得完整的PDF。
{"title":"Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice","authors":"Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim","doi":"10.1017/gmb.2023.17","DOIUrl":"https://doi.org/10.1017/gmb.2023.17","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GUT METABOLOMIC PROFILES IN PEDIATRIC ULCERATIVE COLITIS PATIENTS PRIOR TO AND AFTER RECEIVING FECAL MICROBIOTA TRANSPLANTS 儿童溃疡性结肠炎患者接受粪便菌群移植前后的肠道代谢组学特征
Pub Date : 2023-10-06 DOI: 10.1017/gmb.2023.15
Parastou S. Khalessi Hosseini, Beibei Wang, Yihui Luan, Fengzhu Sun, Sonia Michail
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
此内容的摘要不可用,因此提供了预览。当您可以访问此内容时,可以通过“保存PDF”操作按钮获得完整的PDF。
{"title":"GUT METABOLOMIC PROFILES IN PEDIATRIC ULCERATIVE COLITIS PATIENTS PRIOR TO AND AFTER RECEIVING FECAL MICROBIOTA TRANSPLANTS","authors":"Parastou S. Khalessi Hosseini, Beibei Wang, Yihui Luan, Fengzhu Sun, Sonia Michail","doi":"10.1017/gmb.2023.15","DOIUrl":"https://doi.org/10.1017/gmb.2023.15","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. 产丁酸盐和形成孢子的细菌属粪原球菌作为神经系统疾病的潜在生物标志物
Pub Date : 2023-08-30 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.14
Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort

The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. Coprococcus is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of Coprococcus spp. in depressed individuals. The species Coprococcus eutactus has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on Coprococcus and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus Coprococcus is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.

摘要:粪球菌是神经系统疾病的潜在生物标志物和调节剂。1. 婴儿期早期摄入的活菌孢子。2. 孢子在肠道中萌发。3.富含纤维的饮食加强了白僵菌的定植。4. C. eutactus在纤维发酵过程中产生短链脂肪酸(SCFAs)。它有多种丁酸盐生产途径。5. 结肠细胞通过促进扩散或通过游离脂肪酸受体(FFARs)吸收SCFAs。结肠细胞的丁酸盐代谢可改善上皮屏障功能。6. SCFAs的摄取导致胰高血糖素样肽1 (GLP-1)和厌氧肽YY (PYY)的分泌。这些多肽抑制食欲,并可能对神经系统有影响。7. 肠-脑轴构成SCFA和肽通过血液运输或SCFA信号通过迷走神经。在右上角显示了隐含的神经学效应。*与C. eutactus特异性相关。A.a,氨基酸;血脑屏障;HPA -肾上腺;强迫症,强迫性精神障碍。创建与BioRender.com。在过去的二十年中,随着DNA测序和培养技术的进步,宿主-肠道微生物组相互作用得到了广泛的科学关注。越来越多的证据表明,肠道微生物在肠道内稳态、免疫系统教育和生活质量指标中起着至关重要的作用。有益的健康因素与结肠中膳食纤维的消化以及随后产生的短链脂肪酸(包括乙酸、丙酸和丁酸)有关。粪球菌是厚壁菌门中的一种产丁酸盐属,其丰度与几种神经心理和神经退行性疾病呈负相关。病例对照研究提供了强有力的证据,表明抑郁个体中粪球菌的丰度降低。该物种具有独特的能力,利用两种不同的途径合成丁酸盐,并已发现在语言发育迟缓的儿童和患有帕金森病的成人中缺乏丁酸盐。关于粪球菌和肠道微生物群-脑轴的综合文献指出,丁酸盐产量增加和致病性分支定植减少是解释其与健康影响相关的因素。粪球菌属是一种很有希望的心理健康生物标志物,也是一种基于饮食的新型神经系统疾病预防疗法的有趣先导。
{"title":"The butyrate-producing and spore-forming bacterial genus <i>Coprococcus</i> as a potential biomarker for neurological disorders.","authors":"Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort","doi":"10.1017/gmb.2023.14","DOIUrl":"10.1017/gmb.2023.14","url":null,"abstract":"<p><p>The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. <i>Coprococcus</i> is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of <i>Coprococcus</i> spp. in depressed individuals. The species <i>Coprococcus eutactus</i> has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on <i>Coprococcus</i> and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus <i>Coprococcus</i> is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e16"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46753227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome. 用于肠道微生物组系统综述和荟萃分析的偏倚风险评估工具
Pub Date : 2023-08-18 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.12
Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan

Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome studies.

偏倚风险评估是任何荟萃分析或系统评价的关键步骤。鉴于许多微生物组研究的样本数很少,特别是涉及人类受试者的观察性或队列研究,许多微生物组研究的有效性很低。这增加了对微生物组研究进行荟萃分析和系统评价的重要性,以提高微生物组研究结果的相关性和适用性。本工作提出了一种基于ROBINS-I工具的方法,以系统地考虑微生物组研究中的偏倚来源,寻求对微生物组研究进行荟萃分析或系统评价。
{"title":"Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome.","authors":"Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan","doi":"10.1017/gmb.2023.12","DOIUrl":"10.1017/gmb.2023.12","url":null,"abstract":"<p><p>Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome studies.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e13"},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity. 动物园饲养的大猩猩肠道微生物组的多组学特征揭示了细菌群落组成变化,真菌纤维素降解和古细菌产甲烷活性
Pub Date : 2023-07-19 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.11
Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort

We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.

摘要通过16S rRNA基因扩增子测序,对西部低地大猩猩与野生大猩猩的细菌菌群组成进行了比较分析。此外,我们通过鸟枪宏基因组学和RNA测序表征了动物园大猩猩(ZHG)微生物组的碳水化合物活性和产甲烷潜力。与野生大猩猩微生物群相比,ZHG微生物群在细菌种类丰富度和组成上表现出更高的α多样性,包括丰富的纤维降解和氢氯氟酸的丧失。CAZyome的宏基因组分析表明,低聚糖降解活性占主导地位,而RNA测序显示,ZHG肠道中存在多种纤维素酶和半纤维素酶活性,共鉴定出268种碳水化合物活性酶。元转录组分析显示,厌氧真菌和古细菌对大猩猩微生物组的转录本有38%的实质性贡献。这种活性来源于纤维素降解真菌和产氢真菌,它们分别属于neocallimastigomycates类,以及甲基营养型和氢营养型产甲烷古细菌,它们分别属于热原菌类和甲烷细菌类。我们的研究显示了RNA测序在多组学方法中的附加价值,并突出了真核生物和古细菌活动对大猩猩肠道微生物组的贡献。
{"title":"Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity.","authors":"Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort","doi":"10.1017/gmb.2023.11","DOIUrl":"10.1017/gmb.2023.11","url":null,"abstract":"<p><p>We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41930133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gut microbiome (Cambridge, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1