Pub Date : 2024-12-05eCollection Date: 2024-01-01DOI: 10.1017/gmb.2024.14
Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung
Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma, inversely and Negativibacillus, Streptococcus, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.
{"title":"Pro-inflammatory and hyperinsulinaemic dietary patterns are associated with specific gut microbiome profiles: a TwinsUK cohort study.","authors":"Ni Shi, Sushma Nepal, Rachel Hoobler, Cristina Menni, Mary C Playdon, Daniel Spakowicz, Philippa M Wells, Claire J Steves, Steven K Clinton, Fred K Tabung","doi":"10.1017/gmb.2024.14","DOIUrl":"https://doi.org/10.1017/gmb.2024.14","url":null,"abstract":"<p><p>Metabolic dietary patterns, including the Empirical Dietary Index for Hyperinsulinaemia (EDIH) and Empirical Dietary Inflammatory Pattern (EDIP), are known to impact multiple chronic diseases, but the role of the colonic microbiome in mediating such relationships is poorly understood. Among 1,610 adults with faecal 16S rRNA data in the TwinsUK cohort, we identified the microbiome profiles for EDIH and EDIP (from food frequency questionnaires) cross-sectionally using elastic net regression. We assessed the association of the dietary pattern-related microbiome profile scores with circulating biomarkers in multivariable-adjusted linear regression. In addition, we used PICRUSt2 to predict biological pathways associated with the enriched microbiome profiles, and further screened pathways for associations with the dietary scores in linear regression analyses. Microbiome profile scores developed with 32 (EDIH) and 15 (EDIP) genera were associated with higher insulin and homeostatic model assessment of insulin resistance. Six genera were associated with both dietary scores: <i>Ruminococcaceae_UCG-008, Lachnospiraceae_UCG-008, Defluviitaleaceae_UCG-011 Anaeroplasma</i>, inversely and <i>Negativibacillus, Streptococcus</i>, positively. Further, pathways in fatty acid biosynthesis, sugar acid degradation, and mevalonate metabolism were associated with insulinaemic and inflammatory diets. Dietary patterns that exert metabolic effects on insulin and inflammation may influence chronic disease risk by modulating gut microbial composition and function.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02eCollection Date: 2024-01-01DOI: 10.1017/gmb.2024.13
M Andrea Azcarate-Peril
The gut microbiome is widely recognized for its significant contribution to maintaining human health across all life stages, from infancy to adulthood and beyond. This perspective article focuses on the impacts of well-supported microbiome research on global caesarean delivery rates, breastfeeding practices, and antimicrobial use. The article also explores the impact of dietary choices, particularly those involving ultra-processed foods, on the gut microbiota and their potential contribution to conditions like obesity, metabolic syndrome, and inflammatory diseases. This perspective aims to emphasize the need for updated guidelines and policy interventions to address the increasing global trends of caesarean deliveries, reduced breastfeeding, overuse of antibiotics, and consumption of highly processed foods to counter their adverse effects on gut health.
{"title":"Has the two decades of research on the gut microbiome resulted in making healthier choices?","authors":"M Andrea Azcarate-Peril","doi":"10.1017/gmb.2024.13","DOIUrl":"https://doi.org/10.1017/gmb.2024.13","url":null,"abstract":"<p><p>The gut microbiome is widely recognized for its significant contribution to maintaining human health across all life stages, from infancy to adulthood and beyond. This perspective article focuses on the impacts of well-supported microbiome research on global caesarean delivery rates, breastfeeding practices, and antimicrobial use. The article also explores the impact of dietary choices, particularly those involving ultra-processed foods, on the gut microbiota and their potential contribution to conditions like obesity, metabolic syndrome, and inflammatory diseases. This perspective aims to emphasize the need for updated guidelines and policy interventions to address the increasing global trends of caesarean deliveries, reduced breastfeeding, overuse of antibiotics, and consumption of highly processed foods to counter their adverse effects on gut health.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29eCollection Date: 2024-01-01DOI: 10.1017/gmb.2024.8
Yvonne E Finnegan, Holly R Neill, Emily J Prpa, Bruno Pot
The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.
{"title":"\"Gut\" to grips with the science of the microbiome - a symposium report.","authors":"Yvonne E Finnegan, Holly R Neill, Emily J Prpa, Bruno Pot","doi":"10.1017/gmb.2024.8","DOIUrl":"https://doi.org/10.1017/gmb.2024.8","url":null,"abstract":"<p><p>The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e11"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04eCollection Date: 2024-01-01DOI: 10.1017/gmb.2024.11
David Michael Warner, Arunab Harish Mehta
Streptococcus gallolyticus, subspecies gallolyticus (Sgg) is a gram-positive bacterium associated with infective endocarditis and colorectal cancer (CRC). Sgg has features that allow the bacterium to thrive in the colorectal tumor microenvironment and further progress the development of CRC to facilitate its survival. Sgg contains 3 pili that facilitate colonic cell adhesion and translocation through phase variation. Sgg also contains bile salt hydrolase and a bacteriocin called gallocin with substantially increased activity in bile acids, which facilitates its growth in the bile acid-rich adenomatous colorectal microenvironment. Sgg also uses tumor metabolites as an energy source. Sgg also possesses tannase, which metabolizes gallotannin to be used as a carbon source and reduces the anti-apoptotic effects of tannins, driving CRC progression. Sgg also interferes with a variety of oncogenic cell signaling pathways, including the Wnt/β-catenin pathway through mechanisms that are not fully elucidated. Increased β-catenin signaling also enhances adhesion via increased expression of the extracellular matrix and increases bile acid concentrations in the lumen through downregulation of an apical bile acid transporter. Finally, Sgg induces biotransformation of toxic substrates in CRC cells, which leads to formation of toxic intermediates and DNA adducts, promoting further progression of CRC.
{"title":"Factors underlying the association between <i>Streptococcus gallolyticus</i>, subspecies <i>gallolyticus</i> infection and colorectal cancer: a mini review.","authors":"David Michael Warner, Arunab Harish Mehta","doi":"10.1017/gmb.2024.11","DOIUrl":"https://doi.org/10.1017/gmb.2024.11","url":null,"abstract":"<p><p><i>Streptococcus gallolyticus</i>, subspecies <i>gallolyticus</i> (Sgg) is a gram-positive bacterium associated with infective endocarditis and colorectal cancer (CRC). Sgg has features that allow the bacterium to thrive in the colorectal tumor microenvironment and further progress the development of CRC to facilitate its survival. Sgg contains 3 pili that facilitate colonic cell adhesion and translocation through phase variation. Sgg also contains bile salt hydrolase and a bacteriocin called gallocin with substantially increased activity in bile acids, which facilitates its growth in the bile acid-rich adenomatous colorectal microenvironment. Sgg also uses tumor metabolites as an energy source. Sgg also possesses tannase, which metabolizes gallotannin to be used as a carbon source and reduces the anti-apoptotic effects of tannins, driving CRC progression. Sgg also interferes with a variety of oncogenic cell signaling pathways, including the Wnt/β-catenin pathway through mechanisms that are not fully elucidated. Increased β-catenin signaling also enhances adhesion via increased expression of the extracellular matrix and increases bile acid concentrations in the lumen through downregulation of an apical bile acid transporter. Finally, Sgg induces biotransformation of toxic substrates in CRC cells, which leads to formation of toxic intermediates and DNA adducts, promoting further progression of CRC.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e9"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21eCollection Date: 2024-01-01DOI: 10.1017/gmb.2023.18
Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose
Megasphaera elsdenii has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of M. elsdenii in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to in vitro digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable M. elsdenii (Me_D) and seven with no detectable M. elsdenii (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (p < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (p < 0.001), while the opposite was true for the Me_ND microbiomes (p < 0.001). Among amplicon sequence variants that were associated with gas production, M. elsdenii had the strongest association (p < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (p < 0.001). Gas production by M. elsdenii was confirmed by fermentation of sweet potatoes and acetate with human and rumen M. elsdenii isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that M. elsdenii may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.
Megasphaera elsdenii 与人类粪便微生物群在发酵过程中产生的气体有关。本研究的目的是确定Megasphaera elsdenii在微生物群产气中的作用。对芸豆和红薯进行体外消化和透析,然后用 10 个粪便微生物组进行发酵:3 个微生物组检测到了埃尔斯登酵母菌(Me_D),7 个微生物组没有检测到埃尔斯登酵母菌(Me_ND)。与 Me_ND 微生物组相比,Me_D 微生物组产生的气体更多(p p p elsdenii 与人类和瘤胃中的 M. elsdenii 分离物发酵甘薯和醋酸盐证实了 M. elsdenii 的最强关联。人类分离物在红薯和醋酸盐上产生气体。这项研究表明,M. elsdenii 可能通过利用无法消化的底物或交叉摄食醋酸盐,参与致胀气食物发酵过程中的气体产生。
{"title":"<i>Megasphaera elsdenii</i>, a commensal member of the gut microbiota, is associated with elevated gas production during <i>in vitro</i> fermentation.","authors":"Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose","doi":"10.1017/gmb.2023.18","DOIUrl":"https://doi.org/10.1017/gmb.2023.18","url":null,"abstract":"<p><p><i>Megasphaera elsdenii</i> has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of <i>M. elsdenii</i> in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to <i>in vitro</i> digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable <i>M. elsdenii</i> (Me_D) and seven with no detectable <i>M. elsdenii</i> (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (<i>p</i> < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (<i>p</i> < 0.001), while the opposite was true for the Me_ND microbiomes (<i>p</i> < 0.001). Among amplicon sequence variants that were associated with gas production, <i>M. elsdenii</i> had the strongest association (<i>p</i> < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (<i>p</i> < 0.001). Gas production by <i>M. elsdenii</i> was confirmed by fermentation of sweet potatoes and acetate with human and rumen <i>M. elsdenii</i> isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that <i>M. elsdenii</i> may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"5 ","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice","authors":"Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim","doi":"10.1017/gmb.2023.17","DOIUrl":"https://doi.org/10.1017/gmb.2023.17","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"GUT METABOLOMIC PROFILES IN PEDIATRIC ULCERATIVE COLITIS PATIENTS PRIOR TO AND AFTER RECEIVING FECAL MICROBIOTA TRANSPLANTS","authors":"Parastou S. Khalessi Hosseini, Beibei Wang, Yihui Luan, Fengzhu Sun, Sonia Michail","doi":"10.1017/gmb.2023.15","DOIUrl":"https://doi.org/10.1017/gmb.2023.15","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30eCollection Date: 2023-01-01DOI: 10.1017/gmb.2023.14
Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort
The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. Coprococcus is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of Coprococcus spp. in depressed individuals. The species Coprococcus eutactus has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on Coprococcus and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus Coprococcus is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.
{"title":"The butyrate-producing and spore-forming bacterial genus <i>Coprococcus</i> as a potential biomarker for neurological disorders.","authors":"Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort","doi":"10.1017/gmb.2023.14","DOIUrl":"10.1017/gmb.2023.14","url":null,"abstract":"<p><p>The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. <i>Coprococcus</i> is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of <i>Coprococcus</i> spp. in depressed individuals. The species <i>Coprococcus eutactus</i> has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on <i>Coprococcus</i> and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus <i>Coprococcus</i> is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e16"},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46753227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18eCollection Date: 2023-01-01DOI: 10.1017/gmb.2023.12
Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan
Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome studies.
{"title":"Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome.","authors":"Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan","doi":"10.1017/gmb.2023.12","DOIUrl":"10.1017/gmb.2023.12","url":null,"abstract":"<p><p>Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome studies.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e13"},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19eCollection Date: 2023-01-01DOI: 10.1017/gmb.2023.11
Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort
We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.
{"title":"Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity.","authors":"Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort","doi":"10.1017/gmb.2023.11","DOIUrl":"10.1017/gmb.2023.11","url":null,"abstract":"<p><p>We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e12"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41930133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}